FORMULA 4.388.3

$$
\int_{0}^{\pi / 4} \ln \cos x \frac{\sin ^{2 n} x}{\cos ^{2 n+2} x} d x=\frac{1}{2 n+1}\left[-\frac{1}{2} \ln 2+(-1)^{n+1} \frac{\pi}{4}+\sum_{k=0}^{n} \frac{(-1)^{k-1}}{2 n-2 k+1}\right]
$$

should be written as

$$
\int_{0}^{\pi / 4} \ln \cos x \frac{\sin ^{2 n} x}{\cos ^{2 n+2} x} d x=\frac{1}{2 n+1}\left[-\frac{\ln 2}{2}+(-1)^{n+1} \frac{\pi}{4}+\sum_{k=0}^{n} \frac{(-1)^{k-1}}{2 n-2 k+1}\right]
$$

