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Valparáıso, Chile
ISSN 0716-8446
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The integrals in Gradshteyn and Ryzhik.

Part 16: Complete elliptic integrals

Stefan Boettnera and Victor H. Molla

Abstract. The table of Gradshteyn and Ryzhik contains many entries that are
related to elliptic integrals. We present a systematic derivation of some of them.

1. Introduction

Elliptic integrals were at the center of analysis at the end of 19th-century. The
complete elliptic integral of the first kind defined by

(1.1) K(k) :=

∫ 1

0

dx
√

(1 − x2)(1 − k2x2)

is a function of the so-called modulus k2. The corresponding complete elliptic

integral of the second kind defined by

(1.2) E(k) :=

∫ 1

0

√

1 − k2x2

1 − x2
dx.

The total collection of complete elliptic integrals contains one more, the so-called
complete elliptic integral of the third kind defined by

(1.3) Π(n, k) :=

∫ 1

0

dx

(1 − n2x2)
√

(1 − x2)(1 − k2x2)
.

The complementary integrals are defined by

(1.4) K′(k) := K(k′)

where k′ =
√

1 − k2 is the so-called complementary modulus.
The change of variables x = sin t yields the trigonometric versions

(1.5) K(k) =

∫ π/2

0

dt
√

1 − k2 sin2 t
and E(k) =

∫ π/2

0

√

1 − k2 sin2 t dt,
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46 S. BOETTNER AND V. MOLL

with a similar expression for Π(n, k).
In general, an elliptic integral is one of the form

(1.6) I :=

∫ b

a

P (x) dx

y
,

where y2 is a cubic or quartic polynomial in x. The integral is called complete if a
and b are roots of y = 0. It is clear that K(k) is elliptic. The same is true for E(k),
written in the form

(1.7) E(k) :=

∫ 1

0

(1 − k2x2) dx
√

(1 − x2)(1 − k2x2)
.

2. Some examples

In this section we offer some evaluations from [4] that follow directly from the
definitions. Some special values are offered first. The evaluations of these integrals is
facilitated by Legendre’s relation

(2.1) K(k)E′(k) + K′(k)E(k) − K(k)K′(k) =
π

2
.

The reader will find this identity as Exercise 4 in section 2.4 of [7].

Example 2.1.

(2.2) K
(√

−1
)

=
1

4
√

2π
Γ2

(

1

4

)

.

The proof is direct. The integral is

(2.3) K(
√
−1) =

∫ 1

0

dx
√

1 − x4
=

1

4

∫ 1

0

y−3/4(1 − y)−1/2 dy =
Γ(1/4) Γ(1/2)

4Γ(3/4)
.

The result now follows from the symmetry rule

(2.4) Γ(a)Γ(1 − a) =
π

sinπa

for the gamma function and the special value Γ(1/2) =
√
π. This example appear as

entry 3.166.16 in [4]. Entry 3.166.18 states that

(2.5)

∫ 1

0

x2 dx
√

1 − x4
=

1
√

2π
Γ2

(

3

4

)

.

The proof consists of a reduction to a special value of the beta function. The change
of variables t = x4 gives

(2.6)

∫ 1

0

x2 dx
√

1 − x4
=

1

4

∫ 1

0

t−1/4(1 − t)−1/2 dt.

This integral is 1
4B
(

3
4 ,

1
2

)

. The simplified result is obtained as above.

Formula (1.7) with k =
√
−1 shows that

(2.7) E(
√
−1) =

∫ 1

0

1 + x2

√
1 − x4

dx.
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The values given above show that

(2.8) E(
√
−1) =

1

4
√

2π

[

Γ2

(

1

4

)

+ 4Γ2

(

3

4

)]

.

Example 2.2.

(2.9) K

(

1
√

2

)

=
1

4
√
π

Γ2

(

1

4

)

.

This appears as entry 8.129.1 in [4]. This value comes from the previous example
and the identity

(2.10) K(
√
−1k) =

1
√

1 + k2
K

(

k
√

1 + k2

)

,

with k = 1. The identity (2.10) follows by the change of variables x 7→ x/
√

1 + k2(1 − x2)
in the left-hand side integral.

The values of the modulus k for which K′/K is the square root of an integer are
of considerable interest. These are called the singular values. The previous example
shows that 1/

√
2 is the simplest of them: in this case

(2.11)
K′

K

(

1
√

2

)

= 1.

A list of the first few values kr for which

(2.12)
K′

K
(kr) =

√
r

is given in [3] and it starts with

k2 =
√

2 − 1, k3 =

√
2(
√

3 − 1)

4
, k4 = 3 − 2

√
2, k5 =

1

2

(√√
5 − 1 −

√

3 −
√

5

)

.

3. An elementary transformation

Elementary manipulations can be emploted to evaluate certain entries in [4]. For
instance, direct integration by parts on the integrals defining the functions K and E

produces

(3.1)

∫ 1

0

x arcsin x
√

(1 − k2x2)3
dx =

1

k2

( π

2k′
− K(k)

)

and

(3.2)

∫ 1

0

x arcsin x
√

1 − k2x2
dx =

1

k2

(

E(k) −
π

2
k′
)

.

This last evaluation appears as entry 4.522.4 in [4].
On the other hand, several entries in [4] may be evaluated also by integration by

parts choosing the inverse trigonometric term to be differentiated. Such procedure
gives
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(3.3)

∫ 1

0

x arccos xdx
√

1 − k2x2
=

1

k2

(π

2
− E(k)

)

,

that appears as entry 4.522.5,

(3.4)

∫ 1

0

x arcsin xdx
√
k′2 + k2x2

=
1

k2

(π

2
− E(k)

)

,

that appears as entry 4.522.6, and finally 4.522.7:

(3.5)

∫ 1

0

x arccos xdx
√
k′2 + k2x2

=
1

k2

(

−
π

2
k′ + E(k)

)

.

In this section we derive a different type of elementary transformation for integrals
and use it to obtain the value of some elliptic integrals appearing in [4].

Lemma 3.1. Let f be an odd periodic function of period a. Then

(3.6)

∫ ∞

0

f(x)

x
dx =

π

a

∫ a/2

0

f(x)

tan πx
a

dx.

Proof. The result follows by splitting the integral as
∫ ∞

0

f(x)

x
dx =

∞
∑

k=0

∫ a

0

f(x)

x+ ka
dx

=

∞
∑

k=0

∫ a/2

0

f(x)

[

1

x+ ka
−

1

(k + 1)a− x

]

dx

and using the partial fraction decomposition

(3.7) tan
πb

2
=

4b

π

∞
∑

j=1

1

(2j − 1)2 − b2
,

given as entry 1.421.1 in [4]. �

Corollary 3.1. Let f be an even function with period a. Then

(3.8)

∫ ∞

0

f(x)

x
sin

πx

a
dx =

π

a

∫ a/2

0

f(x) dx.

In particular, for a = π,

(3.9)

∫ ∞

0

f(x)

x
sinxdx =

∫ π/2

0

f(x) dx.

Proof. Apply the lemma to the function f(x) sin πx
a which is odd and it has

period 2a. The result follows from the half-angle formula

(3.10) tan
x

2
=

sinx

1 + cosx

and the value

(3.11)

∫ a

0

f(x) cos
πx

a
dx = 0.
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�

A similar results holds for odd functions. These appear as entry 3.033 in [4].

Corollary 3.2. Let f be an odd function with period a. Then

(3.12)

∫ ∞

0

f(x)

x
sin

πx

a
dx =

π

a

∫ a/2

0

f(x) cos
πx

a
dx.

In particular, for a = π,

(3.13)

∫ ∞

0

f(x)

x
sinxdx =

∫ π/2

0

f(x) cosxdx.

Example 3.1. The function f(x) ≡ 1 and a = π in Corollary 3.1 gives the classical
integral

(3.14)

∫ ∞

0

sinx

x
dx =

π

2
.

This is entry 3.721.1 in [4]. The reader will find in [5, 6] a couple of articles by G.
H. Hardy with an evaluation of the many proofs of this identity. These papers are
available in volume 5 of his Complete Works.

Example 3.2. Entry 3.842.3 of [4] consists of four evaluations, the first of which

(3.15)

∫ ∞

0

sinx
√

1 − k2 sin2 x

dx

x
= K(k).

This follows from Corollary 3.1 by choosing a = π and f(x) = 1/
√

1 − k2 sin2 x. A
different proof of this evaluation is offered in Section 6 below.

Example 3.3. A second integral appearing in 3.842.3 is

(3.16)

∫ ∞

0

sinx
√

1 − k2 cos2 x

dx

x
= K(k).

also follows from Corollary 3.1. This is also true for entry 3.841.1

(3.17)

∫ ∞

0

sinx
√

1 − k2 sin2 x
dx

x
= E(k)

and its companion entry 3.841.2

(3.18)

∫ ∞

0

sinx
√

1 − k2 cos2 x
dx

x
= E(k).

Example 3.4. The elementary method introduced here may be used to evaluate
all integrals of the type

(3.19) Im,n(k) :=

∫ ∞

0

sinn x cosm x
√

1 − k2 sin2 x

dx

x

and the companion family

(3.20) Jm,n(k) :=

∫ ∞

0

sinn x cosm x
√

1 − k2 cos2 x

dx

x
.

All entries in the sections 3.844 and 3.846 match one of these forms.
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Example 3.5. Many other evaluations can be produced by this method. For
instance,

(3.21)

∫ ∞

0

sinx log(1 − k2 sin2 x)
√

1 − k2 sin2 x

dx

x
=

∫ π/2

0

log(1 − k2 sin2 x)
√

1 − k2 sin2 x
dx.

The integral on the left appears as entry 4.432.1 and the one on the right is entry
4.414.1 in [4]. A proof of the identity

(3.22)

∫ π/2

0

log(1 − k2 sin2 x)
√

1 − k2 sin2 x
dx = K(k) ln k′,

is given in Example 7.2.

4. Some principal value integrals

The method described above can be employed to evaluate some entries of [4]
provided the integrals are interpreted as Cauchy principal values.

Example 4.1. The first example is

(4.1)

∫ ∞

0

tanx
√

1 − k2 sin2 x

dx

x
= K(k),

that appears as one of the four entries in 3.842.3 of [4].
Let I1(k) denote the integral and introduce the notation

(4.2) f(x) =
tanx

√

1 − k2 sin2 x
.

Then f(x) is odd and it has period π. The principal value of the integral is given by

(4.3) I1(k) = lim
ǫ→0

∞
∑

j=0

(

∫ π/2−ǫ

0

f(x)

x
dx+

∫ π

π/2+ǫ

f(x)

x+ jπ
dx

)

.

The substitution y = π − x in the second integral above produces

I1(k) = lim
ǫ→0

∞
∑

j=0

∫ π/2−ǫ

0

(

1

x
+

1

x− (j + 1)π

)

f(x) dx

= lim
ǫ→0

∫ π/2−ǫ

0





1

x
+

∞
∑

j=1

2x

x2 − j2π2



 f(x) dx.

The series corresponds to the partial fraction expansion of the cotangent function.
This completes the evaluation of (4.1). The reader will note that this proof is very
similar to that of Lemma 3.1.

The value

(4.4)

∫ ∞

0

tanx
√

1 − k2 cos2 x

dx

x
= K(k),

that also appears in 3.842.3 is established using the same type of argument. This
completes the evaluation of the integrals in that entry of [4].
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Example 4.2. Entry 3.841.3 of [4]

(4.5)

∫ ∞

0

tanx
√

1 − k2 sin2 x
dx

x
= E(k)

and its companion 3.841.4

(4.6)

∫ ∞

0

tanx
√

1 − k2 cos2 x
dx

x
= E(k)

can be established by the method described in the previous example.

5. The hypergeometric connection

The identites among elliptic integrals often make use of the series representations

(5.1) K(k) =
π

2
2F1

[

1
2

1
2

1
; k2

]

=
π

2

∞
∑

j=0

(

1
2

)

j

(

1
2

)

j

j!

k2j

j!
,

and

(5.2) E(k) =
π

2
2F1

[

− 1
2

1
2

1
; k2

]

=
π

2

∞
∑

j=0

(

− 1
2

)

j

(

1
2

)

j

j!

k2j

j!
,

where 2F1 is the classical hypergeometric function

(5.3) 2F1

[

a b
c

; x

]

=

∞
∑

j=0

(a)j (b)j

(c)j j!
xj

and

(5.4) (a)j = a(a+ 1)(a+ 2) · · · (a+ j − 1),

is the Pochhammer symbol. The value (a)0 = 1 is adopted.

6. Evaluation by series expansions

In this section we describe a method to evaluate many of the elliptic integrals
appearing in [4].

Example 6.1. The first example is entry 3.842.3

(6.1)

∫ ∞

0

sinx
√

1 − k2 sin2 x

dx

x
= K(k)

that has been evaluated in Section 3.
Define

(6.2) I1(k
2) :=

∫ ∞

0

sinx
√

1 − k2 sin2 x

dx

x
.

To evaluate the integral, let m = k2 and expand the integrand in power series using

(6.3)

(

d

dm

)j
sinx

x
√

1 −m sin2 x
=

(

1

2

)

j

sin2j+1 x

x
(1 −m sin2 x)−1/2−j .
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Therefore,

(6.4) I1(m) =
∞
∑

j=0

(

1

2

)

j

mj

j!

∫ ∞

0

sin2j+1 x

x
dx.

The remaining integral is entry 3.821.7 in [4]:

(6.5)

∫ ∞

0

sin2j+1 x

x
dx =

(2j − 1)!!

(2j)!!

π

2
.

The value of the integral (6.1) now follows from the series representation of K(k) given
in (5.1).

Proof of (6.5). Start with

(6.6) sin2j+1 x = 2−2j

j
∑

ν=0

(−1)j−ν

(

2j + 1

ν

)

sin(2j − 2ν + 1)x

and the integral in Example 3.1 in the form

(6.7)

∫ ∞

0

sinαx

x
dx =

π

2

for α > 0, to obtain

(6.8)

∫ ∞

0

sin2j+1 x

x
dx =

π

22j+1

j
∑

ν=0

(−1)j−ν

(

2j + 1

ν

)

.

It follows that

(6.9) I1(m) =
π

2

∞
∑

j=0

(

1

2

)

j

(−1)j

22j

mj

j!
×

j
∑

ν=0

(−1)ν

(

2j + 1

ν

)

.

The result now follows from the next lemma.

Lemma 6.1. Let j, k ∈ N. Then

(6.10)
k
∑

ν=0

(−1)j

(

2j + 1

ν

)

= (−1)k

(

2j

k

)

.

Proof. The proof is by induction on k. The case k = 0 is clear. The induction
hypothesis is used to produce

(6.11)

k
∑

ν=0

(−1)ν

(

2j + 1

ν

)

= (−1)k−1

(

2j

k − 1

)

+ (−1)k

(

2j + 1

k

)

,

and an elementary calculation reduces this to (−1)k
(

2j
k

)

. This completes the proof of
(6.5). �

Second proof of (6.5): apply the identity (3.13) to the function f(x) = sin2j x to
obtain

(6.12)

∫ ∞

0

sin2j+1 x

x
dx =

∫ π/2

0

sin2j xdx.
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This last integral is the classical Wallis’ formula given by

(6.13)

∫ π/2

0

sin2j xdx =
π

2

(

1
2

)

j

j!
.

The reader will find in [1] information about this formula.

Example 6.2. Entry 3.841.1 in [4]

(6.14)

∫ ∞

0

sinx
√

1 − k2 sin2 x
dx

x
= E(k)

is established by the same method employed above. The proof starts with the expan-
sion of the integrand using

(6.15)

(

d

dm

)j
sinx

x

√

1 −m sin2 x =
(

− 1
2

)

j

sin2j+1 x

x
(1 −m sin2 x)1/2−j

and then identify the result with (5.2).

Example 6.3. Entry 3.842.4 in [4] states that

(6.16) I2(k) :=

∫ π/2

0

x sinx cosx
√

1 − k2 sin2 x
dx = −

πk′

2k2
+
E(k)

k2
.

The parameter k′ is the complementary modulus k′ =
√

1 − k2.

Write m = k2 and expand the integrand in series using

(6.17)

(

d

dm

)j
x sinx cosx
√

1 −m sin2 x
=

(

1

2

)

j

x sin2j+1 x cosx
√

1 −m sin2 x
.

Therefore

(6.18) I2(m) =

∞
∑

j=0

(

1

2

)

j

mj

j!

∫ π/2

0

x sin2j+1 x cosxdx.

Integration by parts gives

(6.19)

∫ π/2

0

x sin2j+1 x cosxdx =
π

4(j + 1)
−

1

4(j + 1)
B
(

j + 3
2 ,

1
2

)

,

where

(6.20) B(u, v) =

∫ 1

0

tu−1(1 − t)v−1 dt = 2

∫ π/2

0

sin2u−1 ϕ cos2v−1 ϕdϕ,

is the classical beta function. It follows that

(6.21) I2(m) =
π

4

∞
∑

j=0

(

1

2

)

j

mj

(j + 1)!
−

1

4

∞
∑

j=0

(

1

2

)

j

B

(

j +
3

2
,
1

2

)

mj

(j + 1)!
.

The two series are now treated separately.
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The first sum is computed by the binomial theorem

(6.22) (1 − x)−a =
∞
∑

j=0

(a)j

j!
xj

as

(6.23)
π

4

∞
∑

j=0

(

1

2

)

j

mj

(j + 1)!
=

π

2(1 +
√

1 −m)
=

π

2m
(1 −

√
1 −m).

The second sum is

−
1

4

∞
∑

j=0

(

1

2

)

j

B

(

j +
3

2
,
1

2

)

mj

(j + 1)!
= −

√
π

4

∞
∑

j=0

(

1

2

)

j

Γ(j + 3
2 )

(j + 1)!Γ(j + 2)
mj

= −
π

8

∞
∑

j=0

(

1

2

)

j

(

1

2

)

j

mj

(j + 1)!

=
π

2m

∞
∑

j=0

(

−
1

2

)

j+1

(

1

2

)

j+1

mj+1

(j + 1)!

=
π

2m

[

2F1

(

− 1
2

1
2

1
;m

)

− 1

]

.

The hypergeometric representation (5.2) and (6.21) give

(6.24) I2(m) = −
π
√

1 −m

2m
+

E(k)

m

as claimed.

7. A small correction to a formula in Gradshteyn and Ryzhik

In this section we present the evaluation of some elliptic integrals in [4]. In par-
ticular, a small error in formula 4.395.1 is corrected.

Proposition 7.1. Let k′ =
√

1 − k2 be the complementary modulus. Then

(7.1)

∫ ∞

0

lnxdx
√

(1 + x2)(k′2 + x2)
=

1

2
K(k) ln k′.

Proof. Let m = k′2 and use

(7.2)

(

d

dm

)j
lnx

√

(1 + x2)(m+ x2)
= (−1)j

(

1

2

)

j

lnx
√

(1 + x2)(m+ x2)j+1/2

to expand the integrand around m = −1. It follows that

(7.3)

∫ ∞

0

lnxdx
√

(1 + x2)(k′2 + x2)
=

∞
∑

j=0

(−1)j

j!

(

1
2

)

j

∫ ∞

0

ln xdx

(1 + x2)j+1
(m− 1)j .
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This last integral is given by
∫ ∞

0

lnxdx

(1 + x2)j+1
=

1

4

∫ ∞

0

lnxdx
√
x (1 + x)j+1

=
1

4

d

dα
B(α, j − α+ 1)

∣

∣

∣

α=1/2

=
1

4
B
(

1
2 , j + 1

2

) [

ψ
(

1
2

)

− ψ
(

j + 1
2

)]

=
π

2j!

(

1

2

)

j

j−1
∑

i=0

1

2i+ 1
.

Therefore, the left-hand side of (7.1) satisfies

(7.4)

∫ ∞

0

lnxdx
√

(1 + x2)(k′2 + x2)
=
π

2

∞
∑

j=0

(

1
2

)2

j

j!2

j−1
∑

i=0

1

2i+ 1
(1 −m)j .

The series expansion for the complete elliptic integral now shows that the right-hand
side of (7.1) is given by

1

4
lnmK(

√
1 −m) =

π

8





∞
∑

j=1

(1 −m)j

j



×





∞
∑

j=0

(

1
2

)2

j

j!2
(1 −m)j





=
π

8

∞
∑

j=0

[

j−1
∑

i=0

1

j − i

(

1
2

)2

i

i!2

]

(1 −m)j .

The result follows from the identity established in the next lemma. �

Lemma 7.1. Let j ∈ N. Define

(7.5) ar =

(

1
2

)2

r

r!2
.

Then

(7.6)

j−1
∑

i=0

ai

j − i
= 4aj

j−1
∑

i=0

1

2i+ 1
.

Proof. The relations

(7.7) (−x)k = (−1)k(x− k + 1)k and
(

1
2

)

n−k

(

1
2 − n

)

k
= (−1)k

(

1
2

)

n

can be used to rewrite the left-hand side as

j−1
∑

i=0

(

1
2

)2

i

i!2
1

j − i
=

j−1
∑

k=0

(

1
2

)2

j−k−1

(j − k − 1!2
1

k + 1

=

(

1
2

)2

j

j!2

j−1
∑

k=0

(−j)2k+1
(

1
2 − j

)2

k+1

1

k + 1
.
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Thus the assertion of the lemma is equivalent to

(7.8)

j−1
∑

k=0

(−j)2k+1
(

1
2 − j

)2

k+1

1

k + 1
=

j−1
∑

k=0

4

2k + 1
.

Next apply the fact that (x)k+1 = x(x+ 1)k to obtain

j−1
∑

k=0

(−j)2k+1
(

1
2 − j

)2

k+1

1

k + 1
=

j2
(

1
2 − j

)2

j−1
∑

k=0

(1 − j)2k
(

3
2 − j

)2

k

1

k + 1

=
j2

(

1
2 − j

)2

j−1
∑

k=0

(1 − j)2k(1)2k
(

3
2 − j

)2

k
(2)k k!

.

The right-hand side is a balanced 4F3 series and it can be transformed using

4F3

[

x y z −m
u v w

; 1

]

=

(v − z)m (w − z)m

(v)m (w)m
4F3

[

u− x u− y z −m
1 − v + z −m 1 − w + z −m u

; 1

]

.

See [2], page 56. Now let y = z = 1, x = 1 − j, m = j − 1, u = v = 3
2 − j and w = 2.

It follows that

4F3

[

1 1 1 − j 1 − j
3
2 − j 3

2 − j 2
; 1

]

=

(1
2 − j)j−1 (1)j−1

(3
2 − j)j−1 (2)j−1

4F3

[

1 1
2 −j + 1

2 1 − j
−j + 3

2
3
2 1 − j

; 1

]

.

The last hypergeometric terms is now simplified

2j − 1

j

j−1
∑

k=0

(

1
2

)

k

(

−j + 1
2

)

k
(

3
2

)

k

(

−j + 3
2

)

k

=
(2j − 1)2

j

j−1
∑

k=0

1

(2k + 1)(2j − 1 − 2k)

=
(2j − 1)2

2j2

j−1
∑

k=0

(

1

2k + 1
+

1

2j − 1 − 2k

)

=
(2j − 1)2

j2

j−1
∑

k=0

1

2k + 1
,

as claimed. �

An automatic proof. The result of Lemma 7.1 also admits an automatic proof as
described in [8]. Define the functions F (i, j) and G(i, j), respectively, as

(7.9) F (i, j) =

(

1
2

)2

i
j!2

(

1
2

)2

j
i!2

1

j − i
and G(i, j) = −

(

1
2

)2

i
j!2

(

1
2

)2

j+1
i!2

i2

j − i+ 1
.



ELLIPTIC INTEGRALS 57

The stated result is equivalent to the identity a(j) = b(j), where

(7.10) a(j) =

j−1
∑

i=0

F (i, j) and b(j) =

j−1
∑

i=0

1

2j + 1
.

Zeilberger algorithm finds the non-homogeneous recurrence

(7.11) F (i+ 1, j) − F (i, j) = G(i+ 1, j) −G(i, j).

Summing this for i from 0 to j − 1 and using the telescoping of the right-hand side,
produces

j−1
∑

i=0

F (i, j + 1) −
j−1
∑

i=0

F (i, j) =

j−1
∑

i=0

G(i+ 1, j) −
j−1
∑

i=0

G(i, j)

= G(j, j) −G(0, j)

= −
4j2

(2j + 1)2
.

Now observe that

a(j + 1) − a(j) =
4(j + 1)2

(2j + 1)2
+

j−1
∑

i=0

F (i, j + 1) −
j−1
∑

i=0

F (i, j)

=
4(j + 1)2

(2j + 1)2
−

4j2

(2j + 1)2

=
4

2j + 1
.

The sequence b(j) satisfies the same recurrence. Therefore a(j) − b(j) is a constant.
Since a(1) = b(1) = 4 this constant vanishes. This establishes the result.

The next result corrects entry 4.395.1 in [4].

Corollary 7.1. The value

(7.12)

∫ ∞

0

ln tan θ dθ
√

1 − k2 sin2 θ
= −

1

2
ln k′K(k)

holds.

Proof. Let x 7→ tan θ in (7.1). �

Example 7.1. Entry 4.242.1 states

(7.13)

∫ ∞

0

lnxdx
√

(a2 + x2)(b2 + x2)
=

1

2a
K

(√
a2 − b2

a

)

ln ab.

Formula (7.1) corresponds to the special case a = 1. The change of variables x = at
produces
∫ ∞

0

lnxdx
√

(a2 + x2)(b2 + x2)
=

1

b

∫ ∞

0

ln t dt
√

(1 + t2)(c2 + t2)
+

ln a

b

∫ ∞

0

dt
√

(1 + t2)(1 + c2t2)
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with c = b/a. The first integral is evaluated using (7.1) and let t = tanϕ to see that

the second integral is K(
√

1 − c2). This establishes the result.

Example 7.2. The techniques illustrated here are now employed to prove entry
4.414.1 in [4]:

(7.14)

∫ π/2

0

ln(1 − k2 sin2 x)
√

1 − k2 sin2 x
dx = K(k) ln k′.

Let m = k2 and observe that

(7.15)
d

dm

αj + βj ln(1 −m sin2 x)

(1 −m sin2 x)j+1/2
sin2j x =

αj+1 + βj+1 ln(1 −m sin2 x)

(1 −m sin2 x)j+3/2
sin2j+2 x

where the parameters αj , βj satisfy

(7.16) αj+1 = (j + 1
2 )α− j − βj and βj+1 = (j + 1

2 )βj .

Now choose α0 = 0 and β0 = 1 to obtain

(7.17)

(

d

dm

)j
ln(1 −m sin2 x)
√

1 −m sin2 x
=
αj + βj ln(1 −m sin2 x)

(1 −m sin2 x)j+1/2
sin2j x.

Expand the integrand of (7.14) around m = 0 and use

(7.18)

∫ ∞

0

sin2j xdx =
π

2

(

1
2

)

j

j!2

and the expressions

(7.19) αj =
(

1
2

)

j

j−1
∑

i=0

2

2i+ 1
and βj =

(

1
2

)

j

to see that

(7.20)

∫ π/2

0

ln(1 − k2 sin2 x)
√

1 − k2 sin2 x
dx = π

∞
∑

j=0

(

1
2

)2

j

j!2

(

j−1
∑

i=0

1

2i+ 1

)

mj .

The result now follows from the evaluation given in the proof of Proposition 7.1.
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