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The integrals in Gradshteyn and Ryzhik.

Part 21: Hyperbolic functions

Khristo N. Boyadzhiev and Victor H. Moll

Abstract. The table of Gradshteyn and Ryzhik contains a variety of definite

integrals of elementary functions. In this paper proofs for some of the entries
where the integrand contains hyperbolic functions are provided.

1. Introduction

The table of integrals [1] contains some entries giving definite integrals where the
integrand contains the classical standard hyperbolic functions, defined by

(1.1) sinhx =
ex − e−x

2
and coshx =

ex + e−x

2
.

Some of these entries are verified in the present paper.

2. Some elementary examples

In the evaluation of 3.511.1 in [1]:

(2.1)

∫ ∞

0

dx

cosh ax
=

π

2a
, for a > 0,

the parameter a can be scaled out of the equation. Indeed, the change of variables
t = ax yields

(2.2)

∫ ∞

0

dt

cosh t
=
π

2
.

This can be reduced to a rational integrand by the change of variables s = et to obtain
∫ ∞

0

dt

cosh t
= 2

∫ ∞

1

ds

s2 + 1

= 2
(

tan−1(∞)− tan−1 1
)

=
π

2
.
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2 K. BOYADZHIEV AND V. MOLL

Actually, the change of variables s = et produces the value of the indefinite inte-
gral:

(2.3)

∫

dt

cosh t
= 2

∫

ds

s2 + 1

that leads to

(2.4)

∫

dt

cosh t
= 2 tan−1(et).

This appears as 2.423.9.

Example 2.1. The second elementary example presented here appears as entry
3.527.15

(2.5)

∫ ∞

0

tanh(x/2) dx

coshx
= ln 2.

The integral is written as

(2.6)

∫ ∞

0

tanh(x/2) dx

coshx
= 2

∫ ∞

0

ex − 1

ex + 1

ex dx

e2x + 1
,

and the change of variables t = e−x gives

(2.7)

∫ ∞

0

tanh(x/2) dx

coshx
= 2

∫ 1

0

1− t

(1 + t)(1 + t2)
dt.

The result now comes from an elementary partial fraction decomposition.

3. An example that is evaluated in terms of the Hurwitz zeta function

Special cases of the evaluation

(3.1)

∫ ∞

0

xn dx

cosh(xm)
=

Γ(p)

m 22p−1

[

ζ
(

p, 14
)

− ζ
(

p, 34
)]

,

appear in [1]. Here p = n+1
m and

(3.2) ζ(z, q) =

∞
∑

k=1

1

(k + q)z

is the Hurwitz zeta function. To prove (3.1) simply write

(3.3)

∫ ∞

0

xn dx

cosh(xm)
= 2

∫ ∞

0

xne−xm

dx

1 + e−2xm

and expand the integrand as a geometric series to produce

I = 2

∞
∑

j=0

(−1)j
∫ ∞

0

xne−(2j+1)xm

dx

= 2
∞
∑

j=0

(−1)j

(2j + 1)p

∫ ∞

0

tne−tm dt.
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The change of variables u = tm shows that
∫ ∞

0

tne−tm dt =
1

m

∫ ∞

0

up−1e−u du

=
1

m
Γ(p).

It follows that

(3.4) I =
2Γ(p)

m

∞
∑

j=0

(−1)j

(2j + 1)p
.

Now split the sum according to the parity of j:
∞
∑

j=0

(−1)j

(2j + 1)p
=

∞
∑

j=0

1

(4j + 1)p
−

∞
∑

j=0

1

(4j + 3)p

= 2−2p
(

ζ(p, 14 )− ζ(p, 34 )
)

.

Thus,

(3.5)

∫ ∞

0

xn dx

cosh(xm)
=

Γ(p)

m 22p−1

[

ζ
(

p, 14
)

− ζ
(

p, 34
)]

=
2Γ(p)

m

∞
∑

j=0

(−1)j

(2j + 1)p

as claimed.

Example 3.1. In the case n = m = 1, the parameter p = 2 and 3.521.2 is
obtained:

(3.6)

∫ ∞

0

x dx

coshx
= 2G

where G is Catalan’s constant defined by

(3.7) G :=

∞
∑

j=0

(−1)j

(2j + 1)2
.

The change of variables u = e−t yields 4.231.12:

(3.8)

∫ 1

0

lnu du

1 + u2
= −G.

Example 3.2. The case n = 0, m = 2 yields p = 1/2 and 3.511.8:

(3.9)

∫ ∞

0

dx

cosh(x2)
=

√
π

∞
∑

k=0

(−1)k√
2k + 1

,

follows from Γ(1/2) =
√
π. This integral has been replaced in the last edition of [1]

by the elementary entry

(3.10)

∫ ∞

0

dx

cosh2(x)
= 1.
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Example 3.3. The case n = −1/2, m = 1 yields p = 1/2 and the evaluation of
3.523.12:

(3.11)

∫ ∞

0

dx√
x coshx

= 2
√
π

∞
∑

k=0

(−1)k√
2k + 1

,

Example 3.4. The case n = 1/2, m = 1 yields p = 3/2 and 3.523.11:

(3.12)

∫ ∞

0

√
x dx

coshx
=

√
π

∞
∑

k=0

(−1)k
√

(2k + 1)3
,

follows from Γ(3/2) =
√
π/2.

The evaluation of

(3.13)

∫ ∞

0

xn dx

sinh(xm)
=

2Γ(p)

m

∞
∑

j=0

1

(2j + 1)p
,

with p = (n+ 1)/m is done exactly as above. The identity

(3.14)

∞
∑

j=0

1

(2j + 1)p
=

2p − 1

2p

∞
∑

j=0

1

jp

yields

(3.15)

∫ ∞

0

xn dx

sinh(xm)
=

Γ(p)

m

2p − 1

2p−1
ζ(p).

Example 3.5. The special case m = 1 gives p = n+ 1 and

(3.16)

∫ ∞

0

xn dx

sinhx
= Γ(n+ 1)

2n+1 − 1

2n
ζ(n+ 1).

This appears as 3.523.1 in [1]. In particular n = 1 gives 3.521.1:

(3.17)

∫ ∞

0

x dx

sinhx
=
π2

4
.

This comes in the apparently more general form

(3.18)

∫ ∞

0

x dx

sinh ax
=

π2

4a2
.

But this reduces to the case a = 1 by the change of variables t = ax.

Example 3.6. The special case n = 2k − 1 gives 3.523.2:

(3.19)

∫ ∞

0

x2k−1 dx

sinhx
=

22k − 1

2k
|B2k|π2k

using

(3.20) ζ(2k) =
22k−1|B2k|

(2k)!
π2k.
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The values B4 = −1/30, B6 = 1/42 and B8 = 1/30 give 3.523.6:

(3.21)

∫ ∞

0

x3 dx

sinhx
=
π4

8
,

and 3.523.8:

(3.22)

∫ ∞

0

x5 dx

sinhx
=
π6

4
,

and 3.523.10:

(3.23)

∫ ∞

0

x7 dx

sinhx
=

17π8

16
.

4. A direct series expansion

Entry 3.523.3 states that

(4.1)

∫ ∞

0

xb−1 dx

cosh ax
=

2Γ(b)

(2a)b

∞
∑

k=0

(−1)k

(2k + 1)b
.

The change of variables t = ax shows that the entry is equivalent to the special case
a = 1:

(4.2)

∫ ∞

0

tb−1 dt

cosh t
=

Γ(b)

2b−1

∞
∑

k=0

(−1)k

(2k + 1)b
.

The proof of (4.2) is obtained by modifying the integrand and expanding in series

(4.3)

∫ ∞

0

tb−1e−t dt

1 + e−2t
=

∞
∑

k=0

(−1)k
∫ ∞

0

tb−1e−(2k+1)t dt.

The result follows via the change of variables u = (2k + 1)t.

Example 4.1. In the special case b = 2n + 1, with n ∈ N, the evaluation takes
the form

(4.4)

∫ ∞

0

x2n dx

coshx
= 2(2n)!

∞
∑

k=0

(−1)k

(2k + 1)2n+1
.

The series is represented in terms of the Euler numbers E2n via the classical expression

(4.5)

∞
∑

k=0

(−1)k

(2k + 1)2n+1
=
π2n+1 |E2n|
(2n)! 22n+2

to obtain 3.523.4

(4.6)

∫ ∞

0

x2n dx

coshx
=
(π

2

)2n+1

|E2n|.

The Euler number can be computed from the exponential generating function

(4.7)
1

cosh t
=

∞
∑

n=0

En

n!
tn.
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The first few values are E0 = 1, E2 = −1, E4 = 5 and E6 = 61. This gives the entries
3.523.5

(4.8)

∫ ∞

0

x2 dx

coshx
=
π3

8
,

3.523.7

(4.9)

∫ ∞

0

x4 dx

coshx
=

5π5

32
,

and 3.523.9

(4.10)

∫ ∞

0

x6 dx

coshx
=

61π7

128
.

5. An example involving Catalan constnat

Entry 3.527.14 states that

(5.1)

∫ ∞

0

x2
sinhx

cosh2 x
dx = 4G,

where G is Catalan’s constant defined in (3.7). The evaluation is obtained by writing
the integral as

(5.2)

∫ ∞

0

x2
sinhx

cosh2 x
dx = 2

∫ ∞

0

x2(ex − e−x) e−2x

(1 + e−2x)2
dx

and expanding in a geometric series to produce

(5.3)

∫ ∞

0

x2
sinhx

cosh2 x
dx = −2

∞
∑

k=1

(−1)kk

∫ ∞

0

x2(ex − e−x)e−2kx dx.

Integrate term by term to obtain

(5.4)

∫ ∞

0

x2
sinhx

cosh2 x
dx = −4

∞
∑

k=1

(−1)kk

[

1

(2k − 1)3
− 1

(2k + 1)3

]

.

Simple manipulations of the last two series produce the result.

6. Quotients of hyperbolic functions

Section 3.5 of [1] contains several evaluations where the integrand contains quo-
tients of hyperbolic functions. This section describes a selection of them.

Example 6.1. Formula 3.511.2 states that

(6.1)

∫ ∞

0

sinh ax

sinh bx
dx =

π

2b
tan

πa

2b

To evaluate this entry start with the change of variables t = e−x to obtain

(6.2)

∫ ∞

0

sinh ax

sinh bx
dx =

∫ 1

0

ta−b−1 − t−a−b−1

1− t−2b
dt
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and continue with u = t2b to produce

(6.3)

∫ ∞

0

sinh ax

sinh bx
dx =

1

2b

∫ 1

0

u−c−1/2 − uc−1/2

1− u
du

with c = a/2b. The evaluation of this last form employs formula 3.231.5 in [1]

(6.4)

∫ 1

0

xµ−1 − xν−1

1− x
dx = ψ(ν)− ψ(µ),

where ψ(a) = d
da ln Γ(a) is the logarithmic derivative of the gamma function. This

formula was established in [3]. It follows that

(6.5)

∫ ∞

0

sinh ax

sinh bx
dx =

1

2b

(

ψ(c+ 1
2 )− ψ(−c+ 1

2 )
)

.

The final form of the evaluation comes from the identity 8.365.9

(6.6) ψ( 12 + c) = ψ( 12 − c) + π tanπc.

Example 6.2. Differentiating (6.1) 2m-times with respect to a yields 3.524.2

(6.7)

∫ ∞

0

x2m
sinh ax

sinh bx
dx =

π

2b

d2m

da2m

(

tan
πa

2b

)

,

with special cases 3.524.9
∫ ∞

0

x2
sinh ax

sinh bx
dx =

π3

4b3
sin

πa

2b
sec3

πa

2b
,

3.524.10
∫ ∞

0

x4
sinh ax

sinh bx
dx = 8

( π

2b
sec

πa

2b

)5

· sin πa
2b

·
(

2 + sin2
πa

2b

)

,

and 3.524.11
∫ ∞

0

x6
sinh ax

sinh bx
dx = 16

( π

2b
sec

πa

2b

)7

· sin πa
2b

·
(

45− 30 cos2
πa

2b
+ 2 cos4

πa

2b

)

.

An odd number of differentiations of (6.1) yields 3.524.8

(6.8)

∫ ∞

0

x2m+1 cosh ax

sinh bx
dx =

π

2b

d2m+1

da2m+1

(

tan
πa

2b

)

,

with special cases 3.524.16
∫ ∞

0

x
cosh ax

sinh bx
dx =

( π

2b
sec

πa

2b

)2

,

3.524.17
∫ ∞

0

x3
cosh ax

sinh bx
dx = 2

( π

2b
sec

πa

2b

)4 (

1 + 2 sin2
πa

2b

)

,

3.524.18
∫ ∞

0

x5
cosh ax

sinh bx
dx = 8

( π

2b
sec

πa

2b

)6 (

15− 15 cos2
πa

2b
+ 2 cos4

πa

2b

)

,
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and 3.524.19
∫ ∞

0

x7
cosh ax

sinh bx
dx = 16

( π

2b
sec

πa

2b

)8 (

315− 420 cos2
πa

2b
+ 126 cos4

πa

2b
− 4 cos6

πa

2b

)

.

Example 6.3. Entry 3.511.4 states that

(6.9)

∫ ∞

0

cosh ax

cosh bx
dx =

π

2b
sec

πa

2b
.

The proof follows the procedure employed in Example 6.1. The change of variables
u = e−2bx gives

(6.10)

∫ ∞

0

cosh ax

cosh bx
dx =

1

2b

∫ 1

0

uc−1/2 + u−c−1/2

1 + u
du.

Now employ 3.231.2

(6.11)

∫ 1

0

xp−1 + x−p

1 + x
dx =

π

sinπp

with p = c+ 1/2. This integral was evaluated in [2].

Example 6.4. Differentiating (6.9) an even number of times with respect to the
parameter a gives 3.524.6 :

(6.12)

∫ ∞

0

x2m
cosh ax

cosh bx
dx =

π

2b

d2m

da2m

(

sec
πa

2b

)

.

The special cases 3.524.20
∫ ∞

0

x2
cosh ax

cosh bx
dx =

π3

8b3

(

2 sec3
πa

2b
− sec

πa

2b

)

,

3.524.21
∫ ∞

0

x4
cosh ax

cosh bx
dx =

( π

2b
sec

πa

2b

)5 (

24− 20 cos2
πa

2b
+ cos4

πa

2b

)

,

and 3.524.22
∫ ∞

0

x6
cosh ax

cosh bx
dx =

( π

2b
sec

πa

2b

)7 (

720− 840 cos2
πa

2b
+ 184 cos4

πa

2b
− cos6

πa

2b

)

,

are obtained by performing the differentiation.

Example 6.5. Differentiating (6.9) an odd number of times with respect to the
parameter a gives 3.524.4

(6.13)

∫ ∞

0

x2m+1 sinh ax

cosh bx
dx =

π

2b

d2m+1

da2m+1

(

sec
πa

2b

)

.

The special cases 3.524.12
∫ ∞

0

x
sinh ax

cosh bx
dx =

π2

4b2
sin

πa

2b
sec2

πa

2b
,

3.524.13
∫ ∞

0

x3
sinh ax

cosh bx
dx =

( π

2b
sec

πa

2b

)4

sin
πa

2b

(

6− cos2
πa

2b

)

,
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3.524.14
∫ ∞

0

x5
sinh ax

cosh bx
dx =

( π

2b
sec

πa

2b

)6

sin
πa

2b

(

120− 60 cos2
πa

2b
+ cos4

πa

2b

)

,

and 3.524.15
∫ ∞

0

x7
sinh ax

cosh bx
dx =

( π

2b
sec

πa

2b

)8

sin
πa

2b

(

5040− 4200 cos2
πa

2b
+ 546 cos4

πa

2b
− cos6

πa

2b

)

are obtained as before.

Example 6.6. Integrate (6.9) with respect to the parameter a produces

(6.14)

∫ ∞

0

sinh ax

cosh bx

dx

x
= ln tan

(πa

4b
+
π

4

)

.

This appears as entry 3.524.23 in [1]. The evaluation employs the elementary primi-
tive (that appears as entry 2.01.14)

(6.15)

∫

secu du = ln tan
(x

2
+
π

4

)

.

Example 6.7. Entry 3.527.6 states that

(6.16)

∫ ∞

0

xµ−1 sinh ax

cosh2 ax
dx =

2Γ(µ)

aµ

∞
∑

k=0

(−1)k

(2k + 1)µ−1

that can be scaled to the case a = 1 by t = ax

(6.17)

∫ ∞

0

tµ−1 sinh t

cosh2 t
dt = 2Γ(µ)

∞
∑

k=0

(−1)k

(2k + 1)µ−1
.

To evaluate this last form write the integrand as

(6.18)

∫ ∞

0

tµ−1 sinh t

cosh2 t
dt = 2

∫ ∞

0

tµ−1(et − e−t)e−2t dt

(1 + e−2t)2

and expand it in a power series and integrate it to obtain

(6.19)

∫ ∞

0

tµ−1 sinh t

cosh2 t
dt = 2Γ(µ)

[

1 +
∞
∑

k=1

(−1)k(k + 1)

(2k + 1)µ
−

∞
∑

k=1

(−1)k+1 k

(2k + 1)µ

]

.

This is the right-hand side of (6.17).

The special case µ = 2 and the series

(6.20)

∞
∑

k=0

(−1)k

2k + 1
=
π

4

yield the evaluation of entry 3.527.7

(6.21)

∫ ∞

0

x sinhx

cosh2 x
dx =

π

2
.
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The special case µ = 2m+2 and the series for the Euler numbers in (4.5) produce
the evaluation of entry 3.527.8

(6.22)

∫ ∞

0

x2m+1 sinhx

cosh2 x
dx = (2m+ 1)

(π

2

)2m+1

|E2m|.

7. An evaluation by residues

Entry 3.522.3

(7.1)

∫ ∞

0

dx

(b2 + x2) cosh ax
=

2π

b

∞
∑

k=1

(−1)k−1

2ab+ (2k − 1)π

is now evaluated by the method of residues. The change of variables t = bx shows
that it suffices to evaluate this integral for b = 1; that is,

(7.2)

∫ ∞

0

dx

(1 + x2) cosh ax
= 2π

∞
∑

k=1

(−1)k−1

2a+ (2k − 1)π
.

The integrand f(x) is an even function, therefore the evaluation requested is equivalent
to

(7.3)

∫ ∞

−∞

f(x) dx = π

∞
∑

k=1

(−1)k−1

2a+ (2k − 1)π
.

The integral is computed by closing the real axis with a semi-circle centered at the
origin located in the upper half-plane. An elementary estimate shows that the integral
over the circular boundary vanishes as the radius goes to infinity. Therefore,

(7.4)

∫ ∞

−∞

f(x) dx = 2πi
∑

pj

Res(f ; pj)

where pj is a pole of f in the upper-half plane. The integrand has poles at z = i and

z = (2k−1)πi
2a for k ∈ N. The poles are simple, unless (2k+1)π = 2a for some k. Aside

from this special case, the residues are computed as

Res(f ; i) =
1

2i cosh(ia)
=

1

2i cos a

Res

(

f ;
(2k − 1)πi

2a

)

=
(−1)k−14ia

4a2 − π2(2k − 1)2
.

The residue theorem and a partial fraction decomposition give the stated value of the
integral.

Example 7.1. The special case a = π and b = 1 gives

(7.5)

∫ ∞

0

dx

(1 + x2) coshπx
= 2

∞
∑

k=1

(−1)k−1

2k + 1

and

(7.6)

∞
∑

k=0

(−1)k

2k + 1
=
π

4
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provides entry 3.522.6:

(7.7)

∫ ∞

0

dx

(1 + x2) coshπx
= 2− π

2
.

Example 7.2. The special case a = π/2 and b = 1 gives

(7.8)

∫ ∞

0

dx

(1 + x2) cosh πx
2

=

∞
∑

k=1

(−1)k−1

k
.

The evaluation

(7.9)
∞
∑

k=1

(−1)k−1

k
= ln 2

yields

(7.10)

∫ ∞

0

dx

(1 + x2) cosh πx
2

= ln 2.

This is entry 3.522.8.

Example 7.3. The choice a = π/4 and b = 1 gives

(7.11)

∫ ∞

0

dx

(1 + x2) cosh(πx/4)
= 4

∞
∑

k=1

(−1)k−1

4k − 1
.

Entry 3.522.10 states that

(7.12)

∫ ∞

0

dx

(1 + x2) cosh(πx/4)
=

1√
2

(

π − 2 ln(
√
2 + 1)

)

.

This is now verified by evaluating the series in (7.11). Start by integrating the geo-
metric series

(7.13)

∞
∑

k=1

(−1)kx4k−2 =
x2

1 + x4

to produce

(7.14)

∞
∑

k=1

(−1)k−1

4k − 1
=

∫ 1

0

x2 dx

1 + x4
.

The factorization x4 + 1 = (x2 −
√
2x + 1)(x2 +

√
2x + 1) gives the integral by the

method of partial fractions.

8. An evaluation via differential equations

This section describes a method to evaluate the entries in Section 3.525 by em-
ploying differential equations.
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Example 8.1. Entry 3.525.1 states that

(8.1)

∫ ∞

0

sinh ax

sinhπx

dx

1 + x2
= −a

2
cos a+

1

2
sin a ln[2(1 + cos a)].

To verify this evaluation define

(8.2) y(a) =

∫ ∞

0

sinh ax

sinhπx

dx

1 + x2
.

Then

(8.3) y′′(a) + y(a) =

∫ ∞

0

sinh ax

sinhπx
dx =

1

2
tan

a

2

according to 3.511.2. The equation (8.3) is solved by the method of variation of
parameters. The general solution is of the form

(8.4) y(a) = (u1(a) +A) cos a+ (u2(a) +B) sin a

where the (unknown) functions u1, u2 are determined by solving the system

u′1 cos a+ u′2 sin a = 0

−u′1 sin a+ u′2 cos a =
1

2
tan

a

2
.

The solution to this system is

(8.5) u1(a) =
1

2
(sin a− a) and u2(a) =

1

2
(ln(1 + cos a)− cos a).

The constants A and B in (8.4) are obtained from the values y(0) = 0 and

(8.6) y(π/2) =

∫ ∞

0

1

2 cosh(πx/2)

dx

1 + x2
=

ln 2

2

according to 3.522.8. This establishes (8.1).

Differentiation of (8.1) gives 3.525.3

(8.7)

∫ ∞

0

cosh ax

sinhπx

x dx

1 + x2
=

1

2
(a sin a− 1) +

cos a

2
ln[2(1 + cos a)].

The same procedure gives the remaining integrals in Section 3.525, namely 3.525.2

(8.8)

∫ ∞

0

sinh ax

sinh(πx/2)

dx

1 + x2
=
π

2
sin a+

cos a

2
ln

1− sin a

1 + sin a

and its derivative 3.525.4

(8.9)

∫ ∞

0

cosh ax

sinh(πx/2)

x dx

1 + x2
=
π

2
cos a− 1− sin a

2
ln

1 + sin a

1− sin a
,

as well as 3.525.6

(8.10)

∫ ∞

0

cosh ax

coshπx

dx

1 + x2
= 2 cos(a/2)− π

2
cos a− sin a ln tan

a+ π

4

and its derivative 3.525.5

(8.11)

∫ ∞

0

sinh ax

coshπx

x dx

1 + x2
= −2 sin(a/2) +

π

2
sin a− cos a ln tan

a+ π

4
.
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9. Squares in denominators

Section 3.527 contains a collection of integrals where the integrand is a com-
bination of powers of the integration variable and a rational function of hyperbolic
functions. The majority of them contain the square of sinh or cosh in the denomina-
tor. These integrals are evaluated in this section.

Example 9.1. Entry 3.527.1 states that

(9.1)

∫ ∞

0

xµ−1 dx

sinh2(ax)
=

4Γ(µ) ζ(µ− 1)

(2a)µ
.

The change of variables t = ax shows that it is sufficient to consider the case a = 1.
This is

(9.2)

∫ ∞

0

tµ−1 dt

sinh2 t
= 22−µΓ(µ)ζ(µ− 1).

The integral to be evaluated is
∫ ∞

0

tµ−1 dt

sinh2 t
= 4

∫ ∞

0

tµ−1 dt

(et − e−t)2
= 4

∫ ∞

0

tµ−1e−2t dt

(1− e−2t)2
.

Expand the integrand into series to obtain

(9.3)

∫ ∞

0

tµ−1 dt

sinh2 t
= 4

∞
∑

n=1

n

∫ ∞

0

tµ−1e−2nt dt.

The change of variables v = 2nt yields

(9.4)

∫ ∞

0

tµ−1 dt

sinh2 t
= 4

∞
∑

n=1

1

nµ−1
× 1

2µ

∫ ∞

0

vµ−1e−v dv.

The series gives the Riemann zeta function term ζ(µ− 1) and the integral is Γ(µ).

The special case µ = 3 gives

(9.5)

∫ ∞

0

x2 dx

sinh2 x
=

1

2
Γ(3)ζ(2).

The values Γ(3) = 2 and ζ(2) = π2/6 gives the evaluation of entry 3.527.12

(9.6)

∫ ∞

−∞

x2 dx

sinh2 x
=
π2

3
.

The identity

(9.7) ζ(2m) =
(2π)2m

2(2m)!
|B2m|

that provides the values of the Riemann zeta function at even integers in terms of the
Bernoulli numbers B2m gives 3.527.2 (in the scaled form a = 1)

(9.8)

∫ ∞

0

x2m dx

sinh2 x
= π2m|B2m|.
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Example 9.2. Entry 3.527.3 states that

(9.9)

∫ ∞

0

xµ−1 dx

cosh2 x
= 22−µ(1− 22−µ)Γ(µ)ζ(µ− 1)

for µ 6= 2 and

(9.10)

∫ ∞

0

x dx

cosh2 x
= ln 2

for the corresponding value for µ = 2. This integral also appears as 3.527.4. The
evaluation proceeds as in the previous example to produce

(9.11)

∫ ∞

0

xµ−1 dx

cosh2 x
= −22−µΓ(µ)

∞
∑

k=1

(−1)k

kµ−1
.

The last series can be expressed in terms of the Riemann zeta function by splitting
the cases k even and odd to produce the identity

(9.12)

∞
∑

k=1

(−1)k

kµ−1
= (22−µ − 1)ζ(µ− 1)

for µ > 1. The case µ = 2 is obtained from the elementary value

(9.13)

∞
∑

k=1

(−1)k

k
= − ln 2.

As in the previous example, the identity (9.7) gives

(9.14)

∫ ∞

0

x2m dx

cosh2 x
=

(22m − 2)

22mπ2m
|B2m|.

This appears as 3.527.5.

The same procedure provides the evaluation

(9.15)

∫ ∞

0

xµ−1 coshx dx

sinh2 x
= 2Γ(µ)ζ(µ− 1)(1− 21−µ),

which appears as entry 3.527.16. The special case µ = 2m + 2 appears as entry
3.527.9

(9.16)

∫ ∞

0

x2m+1 coshx

sinh2 x
dx =

22m+1 − 1

22m
(2m+ 1)!ζ(2m+ 1),

and µ = 2m+ 1 provides entry 3.527.10 in the form

(9.17)

∫ ∞

0

x2m
coshx

sinh2 x
dx = (22m−1 − 1)π2m|B2m|

employing (9.7). Entry 3.527.13

(9.18)

∫ ∞

0

x2
coshx

sinh2 x
dx =

π2

2

is the special case µ = 3.
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10. Two integrals giving beta function values

This final section presents the evaluation of the two integrals that constitute Sec-
tion 3.512.

Example 10.1. Entry 3.512.1 states that

(10.1)

∫ ∞

0

cosh 2βx

cosh2ν ax
dx =

4ν−1

a
B

(

ν +
β

a
, ν − β

a

)

.

The change of variables t = ax and replacing β/a by c provides an equivalent form of
the entry:

(10.2)

∫ ∞

0

cosh 2ct

(cosh t)2ν
dt = 4ν−1B(ν + c, ν − c).

The beta function appearing in the answer is defined by its integral representation

(10.3) B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.

To evaluate the left-hand side of (10.2), write the integrand in exponential form and
let w = e−ct to obtain

(10.4)

∫ ∞

0

e2(c−ν)t + e−2(c+ν)t

(1 + e−2t)2ν
=

∫ 1

0

wν+c + wν−c

(1 + w)2ν
dw.

The result now comes from the integral representation

(10.5) B(x, y) =

∫ 1

0

wx−1 + wy−1

(1 + w)x+y
dw,

that appears as entry 8.380.5 of [1]. An elementary proof of it from (10.3) starts with
the change of variables s = t/(1− t) to produce

(10.6) B(x, y) =

∫ ∞

0

sx−1 ds

(1 + s)x+y

given as entry 8.380.3 and then transform the integral to [0, 1] by splitting into [0, 1]
and [1,∞) and moving the second integral to [0, 1] by s1 = 1/s.

The special case β = 0 gives

(10.7)

∫ ∞

0

dx

(coshx)2µ
= 4µ−1B(µ, µ)

and letting t = ax gives

(10.8)

∫ ∞

0

dx

(cosh at)2µ
=

4µ−1

a
B(µ, µ)

Differentiate with respect to the parameter a to produce

(10.9)

∫ ∞

0

x sinh ax dx

(cosh ax)2µ+1
=

22µ−2

µa2
B(µ, µ).
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The duplication formula of the gamma function

(10.10) Γ(2µ) =
22µ−1

√
π

Γ(µ)Γ(µ+ 1
2 )

transforms (10.9) into

(10.11)

∫ ∞

0

x sinh ax dx

(cosh ax)2µ+1
=

√
π

4µa2
Γ(µ)

Γ(µ+ 1
2 )
.

This appears as entry 3.527.11.

Example 10.2. The last entry in Section 3.512 is 3.512.2

(10.12)

∫ ∞

0

sinhµ x

coshν x
dx =

1

2
B

(

µ+ 1

2
,
ν − µ

2

)

.

Two proofs of this evaluation are given here. The first one is elementary and the
second one enters the realm of hypergeometric functions.

The first proof begins with the change of variables w = coshx to obtain

(10.13)

∫ ∞

0

sinhµ x

coshν x
dx =

∫ ∞

1

(w2 − 1)
µ−1
2 w−ν dw

followed by the change of variables t = w−2 to produce

(10.14)
1

2

∫ 1

0

t
ν−µ
2 −1(1− t)

ν−µ
2 −1 dt =

1

2
B

(

µ+ 1

2
,
ν − µ

2

)

.

The second proof begins by writing the integrand as exponentials to obtain
∫ ∞

0

sinhµ x

coshν x
dx = 2ν−µ−1

∫ 1

0

tν/2−µ/2−1(1− t)µ(1 + t)−ν dt

after the change of variable t = e−2x. The integral representation 9.111 states that
∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt = B(b, c− b)2F1(a, b; c; z).

It follows that
∫ ∞

0

sinhµ x

coshν x
dx = 2ν−µ−1B

(

ν − µ

2
, 1 + µ

)

2F1

(

ν,
ν − µ

2
; 1 +

µ+ ν

2
;−1

)

.

Now use 9.131.1 2F1(a, b; c; z) = (1− z)−a
2F1 (a, c− b; c; z/(z − 1)) to transform the

integral to the value of a hypergeometric function with z = 1/2. The quadratic trans-
formation 9.133 2F1

(

2a, 2b; a+ b+ 1
2 ; z
)

= 2F1

(

a, b; a+ b+ 1
2 ; 4z(1− z)

)

transform
it to the value of a hypergeometric function with z = 1. The result now follows from
the evaluation

2F1 (a, b; c; 1) =
Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)
.
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11. The last two entries of Section 3.525

This section presents a new technique that will produce evaluations of entries
3.525.7 and 3.525.8. This completes the verification of all entries in this section that
started in Section 8.

The first step is the computation of a Laplace transform.

Lemma 11.1. The identity

(11.1)

∫ ∞

0

e−st dt

coshλt+ cosλp
=

2

sinλp

∞
∑

n=1

(−1)n−1 sin(λpn)

s+ λn

holds.

Proof. The factorization

(11.2) coshλt+ cosλp =
eλt

2

(

1 + e−2λt + e−λt+iλp + e−λt−iλp
)

gives the decomposition

e−st

coshλt+ cosλp
=

2e−(λ+s)t

(1 + e−λ(t−ip))(1 + e−λ(t+ip))

=
e−st

sinλp

(

1

1 + e−λ(t+ip)
− 1

1 + e−λ(t−ip)

)

= − 2est

sinλp

∞
∑

n=0

(−1)ne−λtn sinλpn.

The result now follows by integration. �

Example 11.1. The special case λ = 1 and p = π − q in the lemma gives entry
3.543.2:

(11.3)

∫ ∞

0

e−st dt

cosh t− cos q
=

2

sin q

∞
∑

n=1

sin(qn)

s+ n
.

Example 11.2. Entry 3.511.5 is established next. Its value is employed in the
next example. This entry states

∫ ∞

0

sinh ax cosh bx

sinh cx
dx =

π

2c

(

sin πa
c

cos πa
c + cos πb

c

)

The proof starts by expressing the integrand in exponential form to obtain
∫ ∞

0

sinh ax cosh bx

sinh cx
dx =

1

2

∫ ∞

0

e−cx(eax − e−ax)(ebx + e−bx)

1− e−2cx
dx

and use the change of variables t = e−2cx to produce
∫ ∞

0

sinh ax cosh bx

sinh cx
dx =

1

4c

∫ 1

0

t−A−B−1/2 + t−A+B−1/2 − tA−B−1/2 − tA+B−1/2

1− t
dt
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with A = a
2c and B = b

2c . Using the formula
∫ 1

0

1− xa−1

1− x
dx = ψ(a) + γ

given as entry 3.265 (established in [3]), it follows that

∫ ∞

0

sinh ax cosh bx

sinh cx
dx =

1

4c

(

ψ
(

1
2 +A−B

)

− ψ
(

1
2 −A+B

)

+ ψ
(

1
2 +A+B

)

− ψ
(

1
2 −A−B

))

.

The result now follows from the identity

ψ( 12 + z)− ψ( 12 − z) = π tanπz.

Example 11.3. Entry 3.525.7 is

(11.4)

∫ ∞

0

sinh(ax)

sinh(bx)

s

s2 + x2
dx = π

∞
∑

n=1

sin
(

n(b−a)
b π

)

bs+ nπ
.

The evaluation employs the Laplace transform

(11.5)

∫ ∞

0

e−st cosxt dt =
s

s2 + x2

and entry 3.511.5 given in the previous example:
∫ ∞

0

sinh(ax)

sinh(bx)

s

s2 + x2
dx =

∫ ∞

0

e−st

{
∫ ∞

0

sinh(ax)

sinh(bx)
cosxt dx

}

dt

=

∫ ∞

0

e−st

{

π

2b

sin πa
b

cosh πt
b + cos πa

b

}

dt

=
π

2b
sin

πa

b

∫ ∞

0

e−st dt

cosh πt
b + cos πa

b

.

The proof concludes by choosing λ = π/b and a = p in Lemma 11.1 and using
sin (n(b− a)π/b) = (−1)n−1 sin (nπa/b).

Example 11.4. Differentiation entry 3.525.7 with respect to the parameter a
gives

(11.6)

∫ ∞

0

cosh(ax)

sinh(bx)

x

s2 + x2
dx =

π

bs

∞
∑

n=1

(−1)n−1πn

bs+ πn
cos

πan

b
.

To simplify this expression use
πn

bs+ πn
= 1 − bs

bs+ πn
and split the series using the

Fourier expansion

(11.7)
∞
∑

n=1

(−1)n−1 cos
πan

b
=

1

2
.
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This final result is entry 3.525.8

(11.8)

∫ ∞

0

cosh ax

sinh bx

x dx

s2 + x2
=

π

2bs
+ π

∞
∑

n=1

cos n(b−a)
b π

bs+ nπ
.

The series in (11.6) and (11.7) are both Abel-convergent. The reader is invited to
verify that the series (11.8) is convergent and reduces to (8.7) when b = π and s = 1.

Remark 11.1. Section 4.11 of [1] contain many analogous formulas as those con-
sidered here. For instance, entry 3.525.1

(11.9)

∫ ∞

0

sinh ax

sinhπx

dx

1 + x2
= −a

2
cos a+

1

2
sin a ln[2(1 + cos a)]

is related to entry 4.113.3

(11.10)

∫ ∞

0

sin ax

sinhπx

dx

1 + x2
= −a

2
cosh a+

1

2
sinh a ln[2(1 + cosh a)].

The right-hand side of the last entry appears in [1] in the equivalent form

(11.11) −a
2
cosh a+ sinh a ln[2 cosh a/2].

A systematic study of this correspondance and the evaluation of the integrals appear-
ing in Section 4.11 will be presented in a future publication.
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Valparáıso, Chile


