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Universidad Técnica Federico Santa Maŕıa
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The integrals in Gradshteyn and Ryzhik.
Part 27: More logarithmic examples

Luis A. Medina and Victor H. Moll

Abstract. The table of Gradshteyn and Ryzhik contains many entries where

the integrand is a combination of an elementary function and the logarithmic of

another function of the same type. This paper presents proofs of some of these.
A sample of examples where the elementary function is replaced by an algebraic

function is also discussed.

1. Introduction

The compendium [5] contains a large collection of evaluation of integrals of the
form

(1.1)

∫ b

a

R1(x) lnR2(x) dx

where R1 and R2 are rational functions. The first paper in this series [9] considered
the family

(1.2) fn(a) =

∫ ∞
0

lnn−1 x dx

(x− 1)(x+ a)
, for n > 2 and a > 0.

The function fn(a) is given explicitly by

fn(a) =
(−1)n(n− 1)!

1 + a
[1 + (−1)n] ζ(n)(1.3)

+
1

n(1 + a)

bn/2c∑
j=0

(
n

2j

)
(22j − 2)(−1)j−1B2jπ

2j(log a)n−2j .

Here ζ(s) is the Riemann zeta function and B2j is the Bernoulli number. In particular,
(1.3) shows that (1 + a)fn(a) is a polynomial in log a.
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Other papers in this series [3, 8, 10] and also [6] considered examples of integrals
of this type. The results in [3] can be used to provide explicit expressions for an
integral of the type considered here, when the poles of the rational function R2 in
(1.1) have real or purely imaginary parts. The present paper is a continuation of this
work.

2. Some examples involving rational functions

This section considers of integrals of the form

(2.1)

∫ b

a

R1(x) lnR2(x) dx

where R1 and R2 are rational functions.

Example 2.1. Entry 4.234.4 is

(2.2)

∫ ∞
0

1− x2

(1 + x2)2
lnx dx = −π

2

To evaluate this entry, observe that

(2.3)
d

dx

x

1 + x2
=

1− x2

(1 + x2)2
,

and integrating by parts gives

(2.4)

∫ ∞
0

1− x2

(1 + x2)2
lnx dx = −

∫ ∞
0

dx

1 + x2
= −π

2
.

Example 2.2. Entry 4.234.5 states that

(2.5)

∫ 1

0

x2 lnx dx

(1− x2)(1 + x4)
= − π2

16(2 +
√

2)
.

To prove this use the method of partial fraction to obtain

(2.6)

∫ 1

0

x2 lnx dx

(1− x2)(1 + x4)
=

1

4

∫ 1

0

lnx dx

1− x
+

1

4

∫ 1

0

lnx dx

1 + x
+

1

2

∫ 1

0

(x2 − 1) lnx dx

1 + x4
.

The first integral is −π2/6 according to entry 4.231.2 and the second one is −π2/12
from entry 4.231.1. These entries were established in [1]. This gives

(2.7)

∫ 1

0

x2 lnx dx

(1− x2)(1 + x4)
= −π

2

16
+

1

2

∫ 1

0

(x2 − 1) lnx dx

1 + x4
.

To evaluate the last integral, observe that

(2.8)
x2 − 1

1 + x4
=

∞∑
n=0

(−1)n−1x4n +

∞∑
n=0

(−1)nx4n+2.

Now recall the digamma function ψ(z) = Γ′(z)/Γ(z) and the expansion of its derivative

(2.9) ψ′(x) =

∞∑
n=0

1

(x+ n)2
.
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Details about this function may be found in [4] and [13]. This gives

(2.10)

∫ 1

0

(x2 − 1) lnx dx

1 + x4
=

1

64

[
ψ′
(

1

8

)
− ψ′

(
3

8

)
− ψ′

(
5

8

)
+ ψ′

(
7

8

)]
.

The classical relation

(2.11) Γ(x)Γ(1− x) =
π

sinπx
can be shifted to produce

(2.12) Γ
(

1
2 + x

)
Γ
(

1
2 − x

)
=

π

cosπx
.

Logarithmic differentiation shows that the digamma function satisfies

(2.13) ψ

(
1

2
+ x

)
− ψ

(
1

2
− x
)

= π tanπx.

This appears as Entry 8.365.9 in [5]. Differentiation produces

(2.14) ψ′
(

1

2
+ x

)
+ ψ′

(
1

2
− x
)

= π2 sec2 πx.

Now use (2.14) and group 1/8 with 7/8 and 3/8 with 5/8 to produce

(2.15)

∫ 1

0

(x2 − 1) lnx dx

1 + x4
=

1

64

(
4π2

2−
√

2
− 4π2

2 +
√

2

)
=

π2

8
√

2
.

Note 2.3. The reader should evaluate the family of integrals

(2.16) In =

∫ 1

0

x2n lnx

(1− x2)(1 + x4)n
dx, n ∈ N,

by the method described here. The computation of the first few special values indicates
an interesting arithmetic structure of the answer.

3. An entry involving the Poisson kernel for the disk

The section discusses a single entry in [5], where the integrand involves the Pois-
son kernel for the disk. Further examples of this type will be presented in a future
publication.

Example 3.1. The next evaluation is Entry 4.233.5:

(3.1)

∫ ∞
0

lnx dx

x2 + 2xa cos t+ a2
=

t

sin t

ln a

a
.

The integrand is related to the Poisson kernel for the unit disk D = {z ∈ C : |z| < 1}.

Theorem 3.2. Define

(3.2) Pr(θ) = Re
1 + reiθ

1− reiθ
then Pr(θ) is given by

(3.3) Pr(θ) =

∞∑
n=−∞

r|n|einθ =
1− r2

1− 2r cos θ + r2
.
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Moreover, given f defined on the boundary of D, the expression

(3.4) u(reiθ) =
1

2π

∫ π

−π
Pr(θ − t)f(eit) dt

for 0 6 r < 1, is a harmonic function on D and it has a radial limit which agrees with
f almost everywhere on the boundary of D.

The form of the Poisson kernel can be used to establish the next result.

Lemma 3.3. For a, x ∈ R with |x| < |a|,

(3.5)

∞∑
k=0

(−1)k sin((k + 1)t)xk

ak
=

a2 sin t

x2 + 2ax cos t+ a2
.

Note 3.4. The Chebyshev polynomial of the second kind Un(t) is defined by the
identity

(3.6)
sin((n+ 1)θ)

sin θ
= Un(cos θ).

The result of Lemma 3.3 can be written as

(3.7)

∞∑
k=0

Uk(t)xk =
1

x2 − 2x cos t+ 1
.

Lemma 3.3 produces

(3.8)

∫ R

0

xs dx

x2 + 2ax cos t+ a2
=

1

a2 sin t

∞∑
k=0

(−1)k sin((k + 1)t)Rk+s+1

ak (k + s+ 1)
.

Now write sin((k+1)t) in terms of exponential to obtain an expression for the previous
integral as∫ R

0

xs dx

x2 + 2ax cos t+ a2
=

Rs+1

2ia2 sin t

(
eitΦ

(
− R

aeit
, 1, s+ 1

)
− e−itΦ

(
− R

ae−it
, 1, s+ 1

))
where

(3.9) Φ(z, s, a) =
∞∑
k=0

zk

(a+ k)s

is the Lerch Phi function.
Now differentiate with respect to s and let s→ 0 to produce∫ R

0

lnx dx

x2 + 2ax cos t+ a2
=

i lnR

2a sin t

(
log(1 + e−itR/a)− log(1 + eitR/a)

)
(3.10)

+
i

2a sin t

(
Li2(−e−itR/a)− Li2(−e−itR/a)

)
,

where

(3.11) Li2(z) =

∞∑
k=1

zk

k2
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is the dilogarithm function. Then use the identity

(3.12) i
(
Li2(−e−itR/a)− Li2(−e−itR/a)

)
= −

∫ t

0

ln

(
a2 + 2Ra cos z +R2

a2

)
dz

to obtain∫ R

0

lnx dx

x2 + 2ax cos t+ a2
=

i lnR

2a sin t

(
log(1 + e−itR/a)− log(1 + eitR/a)

)
(3.13)

− 1

2a sin t

∫ t

0

ln

(
a2 + 2Ra cos z +R2

a2

)
dz.

The next step is to differentiate (3.13) with respect to t and let R → ∞. The
left-hand side produces

(3.14) T1(a, t) =

∫ ∞
0

2ax lnx sin t dx

(x2 + 2ax cos t+ a2)2
.

Direct differentiation of the right-hand side yields

(3.15) T2(a, t) = lim
R→∞

V1(R; a, t) + V2(R; a, t)

where

(3.16) V1(R; a, t) =
R lnR(R+ a cos t)

a sin t(a2 + 2aR cos t+R2)
− 1

2a sin t
ln

(
a2 + 2aR cos t+R2

a2

)
and

V2(R; a, t) =
i cos t lnR

2a sin2 t

(
log(1 + eitR/a)− log(1 + e−itR/a)

)
(3.17)

+
cos t

2a sin2 t

∫ t

0

ln

(
a2 + 2Ra cos z +R2

a2

)
dz.

Proposition 3.5. The function T2(a, t) is given

(3.18) T2(a, t) = − ln a

2a sin t
(t cot t− 1) .

Proof. Start with the computation of the limiting behavior of V1(R; a, t). The
claim that

(3.19) lim
R→∞

V1(R; a, t) =
ln a

a sin(t)
.

is verified first.
First note that since

(3.20) lim
R→∞

R lnR

a2 + 2aR cos(t) +R2
= 0,

then

lim
R→∞

V1(R; a, t) =
1

a sin t
lim
R→∞

(
R2 lnR

a2 + 2aR cos t+R2
− 1

2
ln(a2 + 2aR cos t+R2) + ln a

)
.
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The claim is equivalent to

(3.21) lim
R→∞

(
R2 lnR

a2 + 2aR cos t+R2
− 1

2
ln(a2 + 2aR cos t+R2)

)
= 0.

The identities

(3.22)
R2 lnR

a2 + 2aR cos t+R2
=

lnR

a2/R2 + 2a cos t/R+ 1

and

(3.23)
1

2
ln(a2 + 2aR cos t+R2) = lnR+

1

2
ln(a2/R2 + 2a cos t/R+ 1)

can be used to see that the left-hand side of (3.21) is equivalent to

lim
R→∞

(
lnR

(
1

a2/R2 + 2a cos t/R+ 1
− 1

)
− 1

2
ln(a2/R2 + 2a cos t/R+ 1)

)
= 0.

It is clear that the second term vanishes as R→∞. For the first term, observe that

(3.24)
1

a2/R2 + 2a cos(t)/R+ 1
− 1 = −2a cos t

R
+O

(
1

R2

)
and thus the first term also vanishes as R→∞. This concludes the proof.

The next step is to verify that

V2(R; a, t) =
i cot t lnR

2a sin2 t

(
log(1 + eitR/a)− log(1 + e−itR/a)

)
(3.25)

+
cos t

2a sin2 t

∫ t

0

ln

(
a2 + 2aR cos z +R2

a2

)
dz

satisfies

(3.26) lim
R→∞

V2(R; a, t) = − t cos t

a sin2 t
ln a.

The proof begins with the identity

(3.27) log(1 + b/x) = log(b/x) +

∞∑
n=1

(−1)n−1 x
n

nbn

to obtain

(3.28) log(1+eitR/a)− log(1+e−itR/a) = log(eit)− log(e−it)+O(a/R), as R→∞.
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The bounds 0 < t < π imply log(eit)− log(e−it) = 2it. This gives

lim
R→∞

V2(R; a, t) = lim
R→∞

(
cos t

2a sin2 t

∫ t

0

ln

(
a2 + 2aR cos z +R2

a2

)
dz − t cos z lnR

a sin2 t

)
= lim

R→∞

cos t

2a sin2 t

(∫ t

0

ln

(
a2 + 2aR cos z +R2

a2

)
dz − 2t lnR

)
= lim

R→∞

cos t

2a sin2 t

(∫ t

0

ln

(
a2 + 2aR cos z +R2

a2

)
− ln(R2) dz

)
= lim

R→∞

cos t

2a sin2 t

(∫ t

0

[ln
(
a2 + 2aR cos z +R2

)
− ln(R2)] dz − 2t ln a

)
.

The identity∫ t

0

[ln
(
a2 + 2aR cos z +R2

)
− ln(R2)] dz =

∫ t

0

ln

(
a2

R2
+

2a cos z

R
+ 1

)
dz

gives the result. The proof of the Proposition is finished. �

The evaluation of entry 4.233.5 is now obtained from the identity T1(a, t) =
T2(a, t). Observe that this implies

(3.29)

∫ ∞
0

2ax lnx sin t dx

(x2 + 2ax cos t+ a2)2
= − ln a

a sin t
(t cot t− 1) .

Integrating with respect to t gives (3.1). Entry 4.231.8 in [5], established in [3],

(3.30)

∫ ∞
0

lnx dx

x2 + a2
=
π ln a

2a

can be used to show that the implicit constant of integration actually vanishes. The
evaluation is complete.

4. Some rational integrands with a pole at x = 1

This section contains proofs of the four entries appearing in Section 4.235. These
are integrals of the form

(4.1) f(a, b, c) :=

∫ ∞
0

xb − xc

1− xa
lnx dx

where a, b, c ∈ N. These integrals are evaluated using entry 4.254.2

(4.2)

∫ ∞
0

xp−1 lnx

1− xq
dx = − π2

q2 sin2 πp
q

.

To obtain this formula, start from 3.231.6

(4.3)

∫ ∞
0

xp−1 − xq−1

1− x
dx = π (cotπp− cotπq) ,
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established in [7] and make the change of variables t = xq to produce∫ ∞
0

xp−1 − 1

1− xq
dx = −1

q

∫ ∞
0

t1/q−1 − tp/q−1

1− t
dt

= −π
q

(
cot

π

q
− cot

πp

q

)
.

Differentiating with respect to p gives (4.2).

Lemma 4.1. Let a, b, c ∈ R. Then

(4.4)

∫ ∞
0

xb−1 − xc−1

1− xa
lnx dx = −π

2

a2

sin (c1 − b1) sin (c1 + b1)

sin2 b1 sin2 c1

where b1 = πb/a and c1 = πc/a.

Proof. Simply write∫ ∞
0

xb−1 − xc−1

1− xa
lnx dx =

∫ ∞
0

xb−1

1− xa
lnx dx−

∫ ∞
0

xc−1

1− xa
lnx dx

and use (4.2). �

The four entries in Section 4.235 are established next.

Example 4.1. Entry 4.235.1 states that

(4.5)

∫ ∞
0

(1− x)xn−2

1− x2n
lnx dx = − π2

4n2
tan2 π

2n
.

Lemma 4.1 is used with a = 2n, b = n− 1 and c = n. This gives

(4.6) b1 =
π

2
− π

2n
and c1 =

π

2
.

and ∫ ∞
0

(1− x)xn−2

1− x2n
lnx dx = − π2

4n2

sin
(
π
2 −

π
2n

)
sin
(
π
2 + π

2n

)
sin2

(
π
2 −

π
2n

) = − π2

4n2
tan2 π

2n
.

Example 4.2. Entry 4.235.2 is

(4.7)

∫ ∞
0

(1− x2)xm−1

1− x2n
lnx dx = − π2

4n2

sin
(
m+1
n π

)
sin
(
π
n

)
sin2

(
πm
2n

)
sin2

(
(m+2)

2n π
) .

Lemma 4.1 is now used with a = 2n, b = m and c = m+ 2. This gives

(4.8) c1 − b1 =
π

n
and c1 + b1 =

π

n
(m+ 1)

to produce the result.

Example 4.3. Entry 4.235.3 states that

(4.9)

∫ ∞
0

(1− x2)xn−3

1− x2n
lnx dx = − π2

4n2
tan2 π

n
.

The values a = 2n, b = n− 2 and c = n give

(4.10) b1 =
π

2
− π

n
and c1 =

π

2
.
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This verifies the claim.

Example 4.4. Entry 4.235.4 appears as

(4.11)

∫ 1

0

xm−1 + xn−m−1

1− xn
lnx dx = − π2

n2 sin2 πm
n

.

The change of variables t = 1/x shows that the integral over [1,∞) is equal to that
over [0, 1], therefore this entry should be written as

(4.12)

∫ ∞
0

xm−1 + xn−m−1

1− xn
lnx dx = − 2π2

n2 sin2 πm
n

,

to be consistent with the other entries in this section. The proof comes from Lemma
4.1 with a = n, b = m and c = n−m.

5. Some singular integrals

The table [5] contains a variety of singular integrals of the form being discussed
here. The examples considered in this section are evaluated employing the formula

(5.1)

∫ ∞
0

tµ−1 dt

1− t
= π cotπµ.

To verify this evaluation, transform the integral over [1,∞) to [0, 1] by the change of
variables x 7→ 1/x. This gives

(5.2)

∫ ∞
0

tµ−1 dt

1− t
=

∫ 1

0

tµ−1 − t−µ

1− t
dt.

This is entry 3.231.1. It was established in [7].
Differentiating with respect to µ, the formula (5.1) gives

(5.3)

∫ ∞
0

tµ−1 ln t

1− t
dt = − π2

sin2 πµ
,

and the change of variables t = xa gives

(5.4) ω(a, b) :=

∫ ∞
0

xb−1 lnx

1− xa
dx = − π2

a2 sin2
(
πb
a

) .
Example 5.1. Entry 4.251.2 states that

(5.5)

∫ ∞
0

xµ−1 lnx

a− x
= πaµ−1

(
ln a cot(πµ)− π

sin2 πµ

)
.

The change of variables x = at yields

(5.6)

∫ ∞
0

xµ−1 lnx

a− x
= aµ−1

∫ ∞
0

tµ−1 ln t

1− t
dt+ aµ−1 ln a

∫ ∞
0

tµ−1 dt

1− t
.

The result now follows from (5.1) and (5.3). It is probably clearer to write this entry
as

(5.7)

∫ ∞
0

xµ−1 lnx

a− x
= πaµ−1

(
ln a

tanπµ
− π

sin2 πµ

)
,

to avoid possible confusions.
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Example 5.2. Entry 4.252.3 is

(5.8)

∫ ∞
0

xp−1 lnx

1− x2
dx = −π

2

4
cosec2πp

2
.

This is ω(2, p) and the result follows from (5.4).

Example 5.3. Entry 4.255.3 states that

(5.9)

∫ ∞
0

1− xp

1− x2
lnx dx =

π2

4
tan2

(πp
2

)
.

This is ω(1, 2)− ω(p+ 1, 2) and the result comes from (5.4).

Example 5.4. Entry 4.252.1 is written as∫ ∞
0

xµ−1 lnx dx

(x+ a)(x+ b)
=

π

(b− a) sinπµ

[
aµ−1 ln a− bµ−1 ln b− πa

µ−1 − bµ−1

tanπµ

]
.

This value follows from the partial fraction decomposition

(5.10)
1

(x+ a)(x+ b)
=

1

b− a
1

x+ a
− 1

b− a
1

x+ b

and entry 4.251.1

(5.11)

∫ ∞
0

xµ−1 lnx

x+ c
dx =

πcµ−1

sinπµ
(ln c− π cotπµ) ,

established in [11]. Differentiating (5.11) with respect to c yields

(5.12)

∫ ∞
0

xµ−1 lnx

(x+ c)2
dx = − (µ− 1)cµ−2π

sinπµ

(
ln c− π cotπµ+

1

µ− 1

)
.

This is entry 4.252.4.

Example 5.5. Entry 4.257.1

(5.13)

∫ ∞
0

xµ ln (x/a) dx

(x+ a)(x+ b)
=
π [bµ ln (b/a) + π(aµ − bµ) cotπµ]

(b− a) sinπµ

follows from (5.11) and the beta integral

(5.14)

∫ ∞
0

xµ−1 dx

x+ a
=
πaµ−1

sinπµ
.

This appears as entry 3.194.3 and it was established in [11].

Example 5.6. The change of variables t = xq gives

(5.15)

∫ ∞
0

xp−1 dx

1− xq
=

1

q

∫ ∞
0

tp/q−1 dx

1− t
=
π

q
cot

(
πp

q

)
from (5.3). This is entry 3.241.3. The special case q = 1 gives

(5.16)

∫ ∞
0

xp−1 dx

1− x
= π cotπp.
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Differentiating with respect to p produces

(5.17)

∫ ∞
0

xp−1 lnx

1− x
dx = − π2

sin2 πp
.

The partial fraction decomposition

(5.18)
1

(x+ a)(x− 1)
=

1

a+ 1

1

x− 1
− 1

a+ 1

1

x+ a

then produces entry 4.252.2

(5.19)

∫ ∞
0

xµ−1 lnx

(x+ a)(x− 1)
dx =

π

(a+ 1) sin2 πµ

[
π − aµ−1 (ln a sinπµ− π cosπµ)

]
.

Example 5.7. The change of variables t = xq produces

(5.20)

∫ ∞
0

lnx dx

xp(xq − 1)
= − 1

q2

∫ ∞
0

t(1−p)/q−1 ln t dt

1− t
.

Then, (5.3) gives

(5.21)

∫ ∞
0

lnx dx

xp(xq − 1)
=
π2

q2

1

sin2
(
p−1
q π

) .
This is entry 4.254.3.

Example 5.8. Entry 4.255.2 is

(5.22)

∫ 1

0

(1 + x2)xp−2

1− x2p
lnx dx = −

(
π

2p

)2

sec2 π

2p
.

The evaluation of this entry starts with entry 3.231.5

(5.23)

∫ 1

0

xµ−1 − xν−1

1− x
dx = −ψ(µ) + ψ(ν)

that was establsihed in [7]. The special case µ = 1

(5.24)

∫ 1

0

1− xν−1

1− x
dx = −ψ(1) + ψ(ν)

is differentiated with respect to ν to produce

(5.25)

∫ 1

0

xν−1 lnx

1− x
dx = −ψ′(ν).

The change of variables x = tb gives

(5.26)

∫ 1

0

tc−1 ln t

1− tb
dt = − 1

b2
ψ′
(c
b

)
.

Therefore∫ 1

0

(1− x2)xp−2

1− x2p
lnx dx =

∫ 1

0

xp−2

1− x2p
lnx dx+

∫ 1

0

xp

1− x2p
lnx dx

= − 1

4p2

[
ψ′
(

1

2
− 1

2p

)
+ ψ′

(
1

2
+

1

2p

)]
.
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The result now follows from the reflection formula for the polygamma function ψ′

given in (2.14).

6. Combinations of logarithms and algebraic functions

This section presents the evaluation of some entries in [5] of the form

(6.1)

∫ b

a

E1(x) lnE2(x) dx

where E1 or E2 is an algebraic function. Some of these have appeared in previous
papers in this series. For example, entry 4.241.11

(6.2)

∫ 1

0

lnx dx√
x(1− x2)

= −
√

2π

8
Γ2

(
1

4

)
and entry 4.241.5

(6.3)

∫ 1

0

lnx
√

(1− x2)2n−1 dx = − (2n− 1)!!

4(2n)!!
π [ψ(n+ 1) + γ + ln 4]

were evaluated in [7]. Here ψ(x) is the digamma function and γ is Euler’s constant.

Note 6.1. Define the family of integrals

(6.4) fn(a) :=

∫ 1

0

xa lnn x dx√
1− x2

.

Special cases include entry 4.241.7

(6.5)

∫ 1

0

lnx dx√
1− x2

= −π
2

ln 2

that was evaluated in [7] and entry 4.261.9

(6.6)

∫ 1

0

ln2 x dx√
1− x2

=
π

2

(
ln2 2 +

π2

12

)
.

A trigonometric form of the family is obtained by the change of variables x = sin t:

(6.7) fn(a) =

∫ π/2

0

sina t lnn sin t dt.

Theorem 6.2. The integral fn(a) is given by

(6.8) fn(a) = lim
s→a

(
d

ds

)n
h(s),

where

(6.9) h(s) =

∫ π/2

0

sins t dt =
1

2
B

(
s+ 1

2
,

1

2

)
=

√
π

2

Γ
(
s
2 + 1

2

)
Γ
(
s
2 + 1

) .
This appears as entry 3.621.5. Therefore, the evaluation of fn(a) requires the values
of Γ(k)(x) for 0 6 k 6 n at x = (a+ 1)/2 and x = a/2 + 1.
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Example 6.3. For example,

f1(0) =

∫ 1

0

lnx dx√
1− x2

= lim
s→0

d

ds

[√
π

2

Γ
(
s
2 + 1

2

)
Γ
(
s
2 + 1

) ]

=

√
π

4

Γ′(1/2)Γ(1)− Γ′(1)Γ(1/2)

Γ2(1)
.

The values

(6.10) Γ′
(

1
2

)
= −
√
π (γ + 2 ln 2) , Γ′(1) = −γ, Γ

(
1
2

)
=
√
π and Γ(1) = 1

give

(6.11) f1(0) = −π
2

ln 2.

Proposition 6.4. The derivatives of the gamma function satisfy the recurrence

(6.12) Γ(n+1)(x) =

n∑
k=0

(
n

k

)
Γ(k)(x)ψ(n−k)(x).

Example 6.5. A direct application of formula (6.8) evaluates entry 4.261.9

(6.13) f2(0) =

∫ 1

0

ln2 x dx√
1− x2

.

Indeed, using Γ(1) = 1, gives

(6.14) f2(0) =

√
π

2

[
− 1

2Γ′
(

1
2

)
Γ′(1) + 1

2Γ
(

1
2

)
Γ′(1)2 + 1

4Γ′′
(

1
2

)
− 1

4Γ
(

1
2

)
Γ′′(1)

]
.

The values

(6.15) Γ′′(1) = γ2 +
π2

6
and Γ′′

(
1
2

)
=

1

2
π5/2 +

√
π(γ + 2 ln 2)2

give the identity (6.6).
It remains to explain the values given in (6.10) and (6.15). The recurrence (6.12)

reduces the computation of the derivatives of Γ(x) to those of ψ(x). The special values
given above come from the next result.

Lemma 6.6. The digamma function satisfies

ψ(n)(1) = (−1)n+1n! ζ(n+ 1)

ψ(n)
(

1
2

)
= (−1)n+1n! (2n+1 − 1)ζ(n+ 1).

Proof. This comes directly from (2.9). �

Example 6.7. The values given in Lemma 6.6 yield

f3(0) =

∫ 1

0

ln3 x dx√
1− x2

= −π
8

(
π2 ln 2 + 4 ln3 2 + 6ζ(3)

)
f4(0) =

∫ 1

0

ln4 x dx√
1− x2

=
π

480

(
19π4 + 120π2 ln2 2 + 240 ln4 2 + 1440 ln 2 ζ(3)

)
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and

f1

(
1
2

)
=

∫ 1

0

√
x lnx dx√
1− x2

=
(π − 4)√

2π
Γ2

(
3

4

)
f2

(
1
2

)
=

∫ 1

0

√
x ln2 x dx√

1− x2
=

1

2
√

2π
Γ2

(
3

4

)
(32− 16G+ π(π − 8)) ,

where G is Catalan’s constant

(6.16) G =

∞∑
n=0

(−1)n

(2n+ 1)2
.

Example 6.8. Entry 4.261.15 states that

(6.17)

∫ 1

0

x2n ln2 x√
1− x2

dx =

(2n− 1)!!

2(2n)!!
π

π2

12
+

2n∑
k=1

(−1)k

k2
+

[
2n∑
k=1

(−1)k

k
+ ln 2

]2
 .

This is obtained by differentiating h(s) twice with respect to s to produce∫ 1

0

xs ln2 x dx√
1− x2

=

√
π

8

Γ
(
s+1

2

)
Γ
(
s
2 + 1

) [(ψ (s
2

+ 1
)
− ψ

(
s+ 1

2

))2

+ ψ′
(
s+ 1

2

)
− ψ′

(s
2

+ 1
)]

.

Therefore∫ 1

0

x2n ln2 x dx√
1− x2

=

√
π

8

Γ
(
n+ 1

2

)
Γ (n+ 1)

[(
ψ (n+ 1)− ψ

(
n+ 1

2

))2
+ ψ′

(
n+ 1

2

)
− ψ′(n+ 1)

]
.

The special values

(6.18) Γ
(
n+ 1

2

)
=

(2n− 1)!!

2n
√
π and Γ(n+ 1) = n!

give∫ 1

0

x2n ln2 x dx√
1− x2

=
π

8

(2n− 1)!!

(2n)!!

[(
ψ(n+ 1)− ψ(n+ 1

2

)2
+ ψ′(n+ 1

2 )− ψ′(n+ 1)
]
.

Now use the special values

(6.19) ψ(n+ 1) = −γ +

n∑
k=1

1

k
and ψ(n+ 1

2 ) = −γ − 2 ln 2 + 2

n∑
k=1

1

2k − 1

as well as

(6.20) ψ′(n+ 1) =
π2

6
−

n∑
k=1

1

k2
and ψ′(n+ 1

2 ) =
π2

2
− 4

n∑
k=1

1

(2k − 1)2
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to obtain

(6.21) ψ(n+ 1)− ψ(n+ 1
2 ) = 2

2n∑
k=1

(−1)k

k
+ 2 ln 2

and

(6.22) ψ′(n+ 1
2 )− ψ′(n+ 1) =

π2

3
+ 4

2n∑
k=1

(−1)k

k2
.

This gives the result.

Example 6.9. A similar analysis gives entry 4.261.16∫ 1

0

x2n+1 ln2 x√
1− x2

dx =

− (2n)!!

(2n+ 1)!!

π2

12
+

2n+1∑
k=1

(−1)k

k2
−

[
2n+1∑
k=1

(−1)k

k
+ ln 2

]2
 .

Example 6.10. Entry 4.241.6 states that

(6.23)

∫ 1/
√

2

0

lnx dx√
1− x2

= −π
4

ln 2− G

2
.

The change of variables x = sin t gives

(6.24)

∫ 1/
√

2

0

lnx dx√
1− x2

=

∫ π/4

0

ln sin t dt.

This integral is entry 4.224.2 and it has been evaluated in [3].

7. An example producing a trigonometric answer

The next example contains, in the logarithmic part, a quotient of linear functions.
The evaluation of this entry requires a different approach.

Example 7.1. Entry 4.297.8 states that

(7.1)

∫ 1

0

ln
1 + ax

1− ax
dx

x
√

1− x2
= π sin−1 a.

This evaluation starts with the expansion

(7.2)
1

x
ln

1 + ax

1− ax
=

∞∑
n=0

2a2n+1

2n+ 1
x2n

to obtain

(7.3)

∫ 1

0

ln
1 + ax

1− ax
dx

x
√

1− x2
=

∞∑
n=0

2a2n+1

2n+ 1

∫ 1

0

x2n dx√
1− x2

.
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The change of variables x = sin θ gives

(7.4)

∫ 1

0

x2n dx√
1− x2

=

∫ π/2

0

sin2n θ dθ =
π

22n+1

(
2n

n

)
.

The last evaluation is the famous Wallis’ formula. It appears as entry 3.621.3 and it
was established in [2] and [12]. Therefore

(7.5)

∫ 1

0

ln
1 + ax

1− ax
dx

x
√

1− x2
=

∞∑
n=0

π

22n

a2n+1

2n+ 1

(
2n

n

)
.

The series is now identified from the classical expansion

sin−1 x =

∞∑
n=0

(
1
2

)
n

(2n+ 1)n!
x2n+1

=

∞∑
n=0

1

22n (2n+ 1)

(
2n

n

)
x2n+1

obtained by expanding the integrand in

(7.6) sin−1 x =

∫ x

0

dt√
1− t2

.

as a binomial series and integrating term by term.

Further examples in [5], of the class considered here, will be presented in a future
publication.
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Casilla 110-V,
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