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The integrals in Gradshteyn and Ryzhik.
Part 30: Trigonometric functions

Tewodros Amdeberhan, Atul Dixit, Xiao Guan, Lin Jiu, Alexey Kuznetsov,
Victor H. Moll, and Christophe Vignat

Abstract. The table of Gradshteyn and Ryzhik contains many integrals that in-
volve trigonometric functions. Evaluations are presented for integrands containing

products of trigonometric functions and products of trigonometric functions and

Legendre polynomials, logarithms, Bessel functions, and the Gauss hypergeomet-
ric function.

1. Introduction

This work forms part of the collection initiated in [21] with the goal of providing
proofs and contact of the entries in the table of integrals [12]. As usual, the evaluations
presented have a pedagogical component. The reader will find in this collection several
proofs of the same result, as well as problems that appear in the process of writing
the proofs. The authors consider important to discuss different approaches to these
problems.

The table of integrals [12] contains a large class of entries where the integrand has
a trigonometric part. These functions form part of the class of elementary functions, so
it is natural that integrals involving them have been considered in detail. The goal of
this note is to provide a sample of entries in [12] where the integrand is a combination
of a basic trigonometric functions and a variety of other special functions.

The results of evaluations of integrals of elementary functions can be particularly
beautiful. Moreover the arguments used in the proofs might not be self-evident. For
instance, entry 4.229.7 is

(1.1)

∫ π/2

π/4

ln ln tanx dx =
π

2
ln

(
Γ
(

3
4

)
Γ
(

1
4

) √2π

)
.

It is remarkable that the evaluation of this entry uses the so-called L-functions as
described in [29]. A collection of integrals similar to (1.1) are given in [5] and [17]. A
new method to evaluate such integrals has been given recently in [8].
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2. Completely elementary entries

The most elementary examples appear in Section 2.01, called The basic integrals

as entries 2.01.5 and 2.01.6

(2.1)

∫
sinx dx = − cosx and

∫
cosx dx = sinx.

This section also contains the elementary evaluations 2.01.7 and 2.01.8

(2.2)

∫
dx

sin2 x
= − cotx and

∫
dx

cos2 x
= tanx

as well as

(2.3)

∫
sinx dx

cos2 x
= secx and

∫
cosx dx

sin2 x
= −cosec x,

appearing as entries 2.01.9 and 2.01.10, respectively. The final examples of trigono-
metric entries in this section are 2.01.11 and 2.01.12

(2.4)

∫
tanx dx = − ln cosx and

∫
cotx dx = ln sinx,

and also

(2.5)

∫
dx

sinx
= ln tan

x

2
and

∫
dx

cosx
= ln(secx+ tanx),

which appear as 2.01.13 and 2.01.14, respectively.

3. Pure powers of sine and cosine

This section contains some explicit expressions for indefinite integrals of the form

(3.1) Ip,q(x) =

∫
sinp x cosq x dx.

The first procedure to generate these evaluations comes from basic identities of trigono-
metric functions. The first result appears as entry 1.320.1 in [12].

Lemma 3.1. For n ∈ N

(3.2) sin2n x =
1

22n

{
2

n−1∑
k=0

(−1)n−k
(

2n

k

)
cos [2(n− k)x] +

(
2n

n

)}
.

Proof. Start with the expansion

(3.3) sin2n x =

[
eix − e−ix

2i

]2n

=
1

22n

2n∑
j=0

(−1)n−j
(

2n

j

)
e2ix(n−j).

The result follows by taking the real part and splitting the sum along 0 6 j 6 n− 1,
the term j = n and then n+ 1 6 j 6 2n. �
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Integrating the identity (3.2) gives entry 2.513.1

(3.4)

∫
sin2n x dx =

x

22n

(
2n

n

)
+

(−1)n

22n−1

n−1∑
k=0

(−1)k
(

2n

k

)
sin(2n− 2k)x

2n− 2k
.

The special definite integral

(3.5)

∫ π/2

0

sin2n x dx =
π

22n+1

(
2n

n

)
,

known as Wallis’ formula, is now a direct consequence of (3.4). This appears as entry
3.621.3, written in the semi-factorial notation

(3.6)

∫ π/2

0

sin2n x dx =
(2n− 1)!!

(2n)!!

π

2
.

Similar identities are stated next. The proofs are omitted.

Lemma 3.2. For n ∈ N, the identity

(3.7) sin2n+1 x =
1

22n

n∑
k=0

(−1)n+k

(
2n+ 1

k

)
sin [(2n− 2k + 1)x]

holds. This appears as entry 1.320.3. Integration yields

(3.8)

∫
sin2n+1 x dx =

(−1)n+1

22n

n∑
k=0

(−1)k
(

2n+ 1

k

)
cos(2n+ 1− 2k)x

2n+ 1− 2k

that appears as entry 2.513.2 and integration gives

(3.9)

∫ π/2

0

sin2n+1 x dx =
(−1)n

22n

n∑
k=0

(−1)k
(

2n+1
k

)
2n+ 1− 2k

.

The right-hand side of (3.9) can be reduced to the form stated in entry 3.621.4:

(3.10)

∫ π/2

0

sin2n+1 x dx =
22n n!2

(2n+ 1)!
.

This is a typical question faced in the process of evaluating definite integrals. A
procedure yields a form of the answer, usually in the form of a finite sum, and then it
is required to match this to the one stated in [12]. This is illustrated next.

Lemma 3.3. For n ∈ N, the identity

(3.11)
(−1)n

22n

n∑
k=0

(−1)k
(

2n+1
k

)
2n+ 1− 2k

=
22n n!2

(2n+ 1)!

holds.

Proof. Write (3.11) in the form

n∑
k=0

(−1)
k (2n+1

k

)
2n− 2k + 1

=
(−1)n24nn!2

(2n+ 1)!
.
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This is now established by checking that both sides satisfy the same recurrence and
that the initial conditions match. The recurrence is obtained from the Sigma package
developed by C. Schneider in [28]. The output is that the left-hand side satisfies

(3.12) 8(n+ 1)f(n) + (2n+ 3)f(n+ 1) = 0.

It is easy to check that the right-hand side of (3.11) also satisfies (3.12), with the same
initial conditions. The proof is complete. �

Lemma 3.4. For n ∈ N, the identity

(3.13) cos2n x =
1

22n

{
2

n−1∑
k=0

(
2n

k

)
cos [(2n− 2k)x] +

(
2n

n

)}
holds. This appears as entry 1.320.5. Integration yields

(3.14)

∫
cos2n x dx =

1

22n

{
n−1∑
k=0

(
2n

k

)
sin [2(n− k)x]

n− k
+

(
2n

n

)
x

}
.

This appears as entry 2.513.3. Integration gives entry 3.621.3

(3.15)

∫ π/2

0

cos2n x dx =
π

22n+1

(
2n

n

)
.

Naturally this also follows from (3.5) by the change of variable x 7→ π
2 − x.

Lemma 3.5. For n ∈ N, the identity

(3.16) cos2n+1 x =
1

22n

n∑
k=0

(
2n+ 1

k

)
cos [(2n− 2k + 1)x]

holds. This appears as entry 1.320.7. Integration yields entry 2.513.4

(3.17)

∫
cos2n+1 x dx =

1

22n

n∑
k=0

(
2n+ 1

k

)
sin [(2n− 2k + 1)x]

(2n− 2k + 1)
.

The change of variables x 7→ π
2 − x gives

(3.18)

∫ π/2

0

cos2n+1 x dx =

∫ π/2

0

sin2n+1 x dx =
22nn!2

(2n+ 1)!

from 3.621.4 established in (3.10) and given in the table in the form (2n)!!/(2n+ 1)!!.

4. A first example

This section presents a proof of the evaluation stated as entry 3.631.16.

Proposition 4.1. For n ∈ N, the identity

(4.1)

∫ π/2

0

cosn x sinnx dx =
1

2n+1

n∑
k=1

2k

k

holds.
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Proof. The first proof uses the reduction formulas given in Section 3. Assume
n is even, say n = 2m. The case n odd is treated by similar arguments. Start with
the identity

(4.2) cos2m x =
1

22m

[
2

m−1∑
k=0

(
2m

k

)
cos((2m− 2k)x) +

(
2m

m

)]
and the elementary evaluation

(4.3)

∫ π/2

0

cos(2jx) sin(2kx) dx =

[
(−1)j+k − 1

]
k

2(j + k)(j − k)
, when j 6= k,

to obtain, for m 6= 0,∫ π/2

0

cos2m x sin 2mxdx =
1

22m

[
m−1∑
k=1

[
1− (−1)k

] n

k(2m− k)

(
2m

k

)
+

1− (−1)m

2m

(
2m

m

)]
.

The next lemma transforms the finite sum above into the form given in (4.1). This
completes the proof. �

Lemma 4.2. For m ∈ N, the identity

(4.4)

m−1∑
k=1

[
1− (−1)k

] 2m

k(2m− k)

(
2m

k

)
+

1− (−1)m

m

(
2m

m

)
=

2m∑
k=1

2k

k

holds.

Proof. Observe that

(4.5)
2m

k (2m− k)
=

1

k
+

1

2m− k
.

Then the left-hand side of (4.4) is

LHS =

m−1∑
k=1

[
1− (−1)

k
](1

k
+

1

2m− k

)(
2m

k

)
+

1− (−1)
m

m

(
2m

m

)

=

m−1∑
k=1

[
1− (−1)

k
] 1

k

(
2m

k

)
+

1− (−1)
m

m

(
2m

m

)
+

m−1∑
k=1

[
1− (−1)

k
] 1

2m− k

(
2m

2m− k

)
.

In the last sum, let l = 2m− k to obtain

LHS =

m−1∑
k=1

[
1− (−1)

k
] 1

k

(
2m

k

)
+

1− (−1)
m

m

(
2m

m

)
+

2m−1∑
l=m+1

[
1− (−1)

2m−l
] 1

l

(
2m

l

)

=

2m−1∑
k=1

[
1− (−1)

k
] 1

k

(
2m

k

)
.
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The function f(x) =

2m−1∑
k=1

1

k

(
2m

k

)
xk, satisfies LHS = f(1)− f(−1). Then

(4.6) f ′(x) =

2m−1∑
k=1

(
2m

k

)
xk−1 =

(1 + x)2m − 1− x2m

x

gives

LHS =

∫ 1

−1

f ′ (x) dx =

∫ 1

−1

(1 + x)
2m − 1

x
dx =

2m∑
k=1

2k

k
.

The proof is complete. �

Note 4.3. The integral (4.1) can now be expressed in terms of the Chebyshev
polynomials of the second kind. These are defined by the identity

(4.7) Ur(cosx) =
sin(r + 1)x

sinx
.

Start with

(4.8)

∫ π/2

0

cosn x sinnx dx =

∫ π/2

0

cosn x
sinnx

sinx
sinx dx

and make the change of variables t = cosx to obtain

(4.9)

∫ π/2

0

cosn x sinnx dx =

∫ 1

0

tnUn−1(t) dt.

Integrals involving products of monomials and Chebyshev-U polynomials will be eval-
uated in Section 6. This will provide an alternative proof of Proposition 4.1.

5. Perhaps a related entry

Given enough patience, the reader will notice that there are pairs of entries in [12]
with the same answer. For instance, entry 4.521.1 is

(5.1)

∫ 1

0

arcsin x

x
dx =

π

2
ln 2

and entry 3.747.7 is

(5.2)

∫ π/2

0

t cot t dt =
π

2
ln 2.

In this case, the change of variables x = sin t shows that both integrals are the same.
The actual evaluation of these entries appears in [2].

It may be possible that the fact that two integrals have the same value, is simply a
coincidence. This section discusses entry 3.274.2. This appears in (5.3) and it agrees
with entry 3.631.16 given in Proposition 4.1.



TRIGONOMETRIC FUNCTIONS 7

Proposition 5.1. For n ∈ N, the identity

(5.3)

∫ 1

0

1− xn

(1 + x)n+1

dx

1− x
=

1

2n+1

n∑
k=1

2k

k

holds.

Proof. Let L(n) and R(n) denote the left-hand side (right-hand side) of (5.3),
respectively. It is shown that both expressions satisfy the difference equation

(5.4) xn =
1

2
xn−1 +

1

2n
, with x1 = 1

2 .

Observe that

2n+1R(n) =

n∑
k=1

2k

k
=

n−1∑
k=1

2k

k
+

2n

n
= 2nR(n− 1) +

2n

n
,

showing that R(n) satisfies the stated recurrence. For the function L(n), compute

L(n)− 1
2L(n− 1) =

∫ 1

0

(1− xn)

(1 + x)n+1 (1− x)
dx−

∫ 1

0

(1− xn−1)

2(1 + x)n (1− x)
dx

=

∫ 1

0

1

2(1 + x)n+1 (1− x)

[
2(1− xn)− (1− xn−1)(1 + x)

]
dx

=

∫ 1

0

1

2(1 + x)n+1 (1− x)

[
(1− x)(1 + xn−1)

]
dx

=
1

2

∫ 1

0

1 + xn−1

(1 + x)n+1
dx.

The change of variables t = 1/x shows that

(5.5)

∫ 1

0

xn−1 dx

(1 + x)n+1
=

∫ ∞
1

dt

(1 + t)n+1

that produces

(5.6) L(n)− 1
2L(n− 1) =

1

2

∫ ∞
0

dx

(1 + x)n+1
=

1

2n
.

The initial condition L(1) = 1/2 is elementary. Therefore L(n) satisfies the same
recurrence as R(n), with the same initial condition. This completes the proof that
L(n) = R(n). �

The identity

(5.7)

∫ 1

0

(1− xn) dx

(1 + x)n+1 (1− x)
=

∫ π/2

0

cosn x sinnx dx

is now established. An interpretation in terms of Chebyshev polynomials is presented
next.

The matching of the sides of (5.7) is now written as an identity showing that two
rational functions have the same integral. The first step is to transform (4.1) into a
rational form.
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Lemma 5.2. For n ∈ N,

(5.8)

∫ π/2

0

cosn x sinnx dx = 2

∫ 1

0

(1− v)n

(1 + v)n+2
Un−1

(
1− v
1 + v

)
dv.

Proof. Start with

(5.9)

∫ π/2

0

cosn x sinnx dx =

∫ π/2

0

cosn x
sinnx

sinx
sinx dx

and use (4.7) followed by the Weierstrass change of variables u = tanx/2 to obtain
the result after the change of variable v = u2. �

Theorem 5.3. Consider the two families of rational functions defined by

(5.10) Y1,n(x) =
1− xn

(1 + x)n+1(1− x)

and

(5.11) Y2,n(x) =
2(1− x)n

(1 + x)n+2
Un−1

(
1− x
1 + x

)
.

Then

(5.12)

∫ 1

0

Y1,n(x) dx =

∫ 1

0

Y2,n(x) dx

for every n ∈ N.

Note 5.4. It is an interesting question to prove the identity (5.12) by a direct
change of variables. A non-systematic procedure, using Mathematica, shows that

(5.13) x(t) =
2t

1 + t2

gives

(5.14)

∫ 1

0

dx

(1 + x)2
=

∫ 1

0

2(1− t) dt
(1 + t)3

,

and

(5.15) x(t) =
4t(1 + t2)

t4 + 6t2 + 1

gives

(5.16)

∫ 1

0

dx

(1 + x)2
=

∫ 1

0

4(1− t)3 dt

(1 + t)5
.

These are the cases n = 1 and n = 2 in (5.12). The reader is encouraged to try the
next case and find a change of variables to prove

(5.17)

∫ 1

0

x2 + x+ 1

(1 + x)4
dx =

∫ 1

0

2(1− t)3(3t2 − 10t+ 3) dt

(1 + t)7
.

(The common value is 5
12 ).
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Note 5.5. The identity of Theorem 5.3 admits an automatic proof described next.
Define

(5.18) V1(n) =

∫ 1

0

1− xn

(1 + x)n+1(1− x)
dx

and

(5.19) V2(n) =

∫ 1

0

2(1− x)n

(1 + x)n+2
Un−1

(
1− x
1 + x

)
dx.

The identity in Theorem 5.3 is equivalent to V1(n) = V2(n), for all n ∈ N.
The proof begins with the generating functions

G1(x, t) =

∞∑
k=0

1− xk

(1 + x)k+1(1− x)
tk =

t

(t− x− 1)(tx− x− 1)

and

G2(x, t) =

∞∑
k=1

2(1− x)k

(1 + x)k+2
Uk−1

(
1− x
1 + x

)
tk

= − 2t(x− 1)

(x+ 1)(−2t(x− 1)2 + t2(x− 1)2 + (x+ 1)2)

= − 2t(x− 1)

(x+ 1)(t2x2 − 2t2x+ t2 − 2tx2 + 4tx− 2t+ x2 + 2x+ 1)
.

This last expression follows from the generating function for the Chebyshev polyno-
mials

(5.20)

∞∑
n=0

Un(x)tn =
1

1− 2tx+ t2
.

Define

(5.21) F1(n|x, t) =
G1(x, t)

tn+1
and F2(n|x, t) =

G2(x, t)

tn+1
.

The function MAZ in the package MultiAlmkvistZeilberger, available in D. Zeil-
berger’s website at

http://www.math.rutgers.edu/∼zeilberg/tokhniot/MultiAlmkvistZeilberger
produces

F1(n+ 1|x, t)− 1

2
F1(n|x, t) =

d

dx

(
x2 − 1

2(n+ 1)t

G1(x, t)

tn+1

)
+
d

dt

(
t− 2

2(n+ 1)

G1(x, t)

tn+1

)
= − t− 2

2(t− x− 1)((t− 1)x− 1)tn+1
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and

F2(n+ 2|x, t)− 1

2
F2(n+ 1|x, t) =

d

dx

(
− tx

2 − t− x2 + 1

4(n+ 2)t2
G2(x, t)

tn+1

)
+
d

dt

(
t− 2

2(n+ 2)t

G2(x, t)

tn+1

)
=

(t− 2)(x− 1)

(x+ 1) (t2(x− 1)2 − 2t(x− 1)2 + (x+ 1)2) tn+2
.

Multiplying the first relation by tn+2 and integrating from x = 0 to 1 yields
∞∑
n=1

(
V1(n)− 1

2V1(n− 1)
)
tn = −

∫ 1

0

(t− 2)t dx

2(t− x− 1)((t− 1)x− 1)
(5.22)

= −1

2
log(1− t).

Similarly, multiplying the second relation above by tn+3 and integrating from x = 0
to 1 gives
∞∑
n=1

(
V2(n)− 1

2V2(n− 1)
)
tn =

∫ 1

0

t(t− 2)(x− 1) dx

(x+ 1) (t2(x− 1)2 − 2t(x− 1)2 + (x+ 1)2)

= −1

2
log(1− t).

It follows from here that V1(n) and V2(n) satisfy the same first order recurrence. The
identity V1(n) ≡ V2(n) now follows from the fact that this initial conditions match.
Indeed,

(5.23) V1(1) =

∫ 1

0

dx

(1 + x)2
=

1

2

and

(5.24) V2(1) =

∫ 1

0

2(1− x) dx

(1 + x)3
=

1

2
.

6. A family of integrals involving Chebyshev-U polynomials

This section provides closed-form expressions for the family of integrals

(6.1) Ij,n =

∫ 1

0

xjUn(x) dx,

where Un(x) is the Chebyshev polynomial of the second kind defined in (4.7). The
example stated in Proposition 4.1 is

(6.2) In,n−1 =
1

2n+1

n∑
k=1

2k

k
.

An experimental search in Mathematica shows that

(6.3) In,n+1 =

∫ 1

0

tnUn+1(t) dt =
1

n
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and

(6.4) In,n+3 =

∫ 1

0

tnUn+3(t) dt =
n

(n+ 1)(n+ 2)
.

The search for closed-form expressions for Ij,n was partially motivated by seeking an
explanation of the simplicity of these forms.

Theorem 6.1. The integral Ij,n is given by

(6.5) Ij,n =

bn/2c∑
k=0

(−1)k
(
n− k
k

)
2n−2k

n+ j + 1− 2k
.

Proof. This follows directly from the expression

(6.6) Un(x) =

bn/2c∑
k=0

(−1)k
(
n− k
k

)
(2x)n−2k

that appears in [1, 22.3.7, p. 775]. �

Note 6.2. The expression (6.6) can be written as

(6.7) Un(x) =

n−1∑
k=0

(−1)k
(
n− k
k

)
(2x)n−2k

and it yields

(6.8) Ij,n =

n−1∑
k=0

(−1)k
(
n− k
k

)
2n−2k

n+ j + 1− 2k
.

since the extra terms, namely those with k > bn2 c, vanish. Observe that the vanishing

of n+j+1−2k requires n+j to be odd, say, n+j = 2r−1. Then k = r = 1
2 (n+j+1)

and this occurs only when r < n − 1; that is, when j < n − 3. In such case, the
corresponding binomial coefficient is

(
n−k
k

)
=
(
r−1−j
r

)
= 0.

Example 6.3. The case considered in Proposition 4.1 has the alternative expres-
sion

(6.9) In,n−1 =

n−2∑
k=0

(−1)k
(
n− 1− k

k

)
2n−2−2k

n− k
, for n > 2.

The proof of this identity uses recurrences produced by the Sigma package developed
in [28]. The output of this package is that left-hand side satisfies the recurrence

(6.10) L(f(n)) = (n+ 1)f(n)− (3n+ 4)f(n+ 1) + (2n+ 4)f(n+ 2) = 0,

where f(n) is the left-hand side of (6.9). It is now shown that

(6.11) g(n) =
1

2n+1

n∑
k=1

2k

k
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satisfies the same recurrence. Indeed,

L(g(n)) = (n+ 1)g(n) + (2n+ 4)g(n+ 2)− (3n+ 4)g(n+ 1)

=
n+ 1

2n+1

n∑
k=1

2k

k
+

2n+ 4

2n+3

n+2∑
k=1

2k

k
− 3n+ 4

2n+2

n+1∑
k=1

2k

k

=
4n+ 4 + 2n+ 4− 6n− 8

2n+3

n∑
k=1

2k

k
+

1

4

(
2n+ 4− 6n− 8

n+ 1
+ 4

)
= 0.

The result now follows by verifying that f(n) and g(n) have the same two initial values.

6.1. An alternative proof. A new closed-form for the integrals Ij,n is presented
next. The analysis begins with the Fourier transform of the Chebyshev polynomial

(6.12) Ûn(ω) =

∫ 1

−1

Un(x)eiωx dx

and the expression

Ûn(ω) =

n∑
k=0

22k+1(n+ k + 1)!k!

(2k + 1)!(n− k)!

[
(−1)n−ke−iω − eiω

]
(−2iω)k+1

=

n∑
k=0

2kk!

(
n+ k + 1

2k + 1

)
ik+1

[
(−1)n−ke−iω − eiω

]
ωk+1

(6.13)

provided in [9].

Proposition 6.4. Assume n+ j is even. Then

(6.14) Ij,n =

∫ 1

0

tjUn(t) dt =
2

ij

(
d

dω

)j
Ûn(ω)

∣∣∣
ω=0

.

Proof. Use Un(−x) = (−1)nUn(x) to obtain

(6.15) Ûn(ω) =

∫ 1

0

[
eiωx + (−1)ne−iωx

]
Un(x) dx.

Differentiating j times with respect to ω gives

(6.16)

∫ 1

0

(ix)j
[
eiωx + (−1)n+je−iωx

]
Un(x) dx =

(
d

dω

)j
Ûn(ω).

Replacing ω = 0 gives the result. �

The next step is to provide a direct proof that Ûn(ω) is an analytic function of ω.

Proposition 6.5. The Fourier transform of the Chebyshev polynomial Un(x) is
given by

(6.17) Ûn(ω) =

n∑
k=0

2kk!

(
n+ k + 1

2k + 1

)
ik+1

∞∑
r=k+1

ir
[
(−1)n−k−r − 1

]
r!

ωr−k−1.
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Proof. Expanding the exponential functions in (6.13) gives

(6.18) Ûn(ω) =

n∑
k=0

2kk!

(
n+ k + 1

2k + 1

)
ik+1

∞∑
r=0

ir
[
(−1)n−k−r − 1

]
r!

ωr−k−1.

It remains to show that the negative powers of ω vanish. The contribution of those
negative powers is

(6.19) Sn(ω) =

n∑
k=0

2kk!

(
n+ k + 1

2k + 1

)
ik+1

k∑
r=0

ir
[
(−1)n−k−r − 1

]
r!

ωr−k−1.

Exchanging the order of summation gives

(6.20) Sn(ω) =

−1∑
`=−n−1

i`
[
(−1)n−`−1 − 1

]( n∑
k=−`−1

(−1)k+12kk!
(
n+k+1
2k+1

)
(`+ k + 1)!

)
ω`.

The coefficient of ω` vanishes if n and ` are of opposite parity. The case of same parity
is given in the lemma below. This completes the proof. �

Lemma 6.6. Let n, ` be positive integers with the same parity. Then

(6.21)

n∑
k=−`−1

(−1)k2kk!

(`+ k + 1)!

(
n+ k + 1

2k + 1

)
= 0

for −n− 1 6 ` 6 −1.

Proof. The proof is based on the WZ-method. A nice description of this pro-
cedure may be found in [22]. Let m = 1 − ` so that 0 6 m 6 n and the identity in
question reads (m,n opposing parity)

n∑
k=m

(−1)k2kk!

(k −m)!

(
n+ k + 1

2k + 1

)
= m!

n∑
k=m

(−2)k
(
k

m

)(
n+ k + 1

2k + 1

)
= 0.

Case 1. (n→ 2n,m→ 2m−1). Define the sumA(n;m) := W (n;m)
∑2n
k=2m−1 F (n, k;m)

where

W (n;m) :=
(−1)n

(
n+m−1
n−m

)(
2n+2m−1
2n−2m+1

)(
4m−2
2m−1

) and F (n, k;m) := (−2)k
(

k

2m− 1

)(
2n+ k + 1

2n− k

)
.

The WZ algorithm generates

(6.22) A(n+ 1;m)−A(n;m) =
∑
k

G(n, k + 1;m)−
∑
k

G(n, k;m) = 0

for

G(n, k;m) :=
4(n+ 1)(k − 2m+ 1)(2k + 1)W (n;m)F (n, k;m)

(2n− k + 1)(2n− k + 2)(2n+ 2m+ 1)
.

Checking initial condition, say A(m;m) = 0, proves the assertion.
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Case 2. (n→ 2n−1,m→ 2m). Define the sumA(n;m) := W (n;m)
∑2n−1
k=2m F (n, k;m)

where

W (n;m) :=
(−1)n

(
n+m−1
n−m−1

)(
2n+2m−1
2n−2m−1

)(
4m
2m

) and F (n, k;m) := (−2)k
(
k

2m

)(
2n+ k

2n− 1− k

)
.

The WZ algorithm generates

(6.23) A(n+ 1;m)−A(n;m) =
∑
k

G(n, k + 1;m)−
∑
k

G(n, k;m) = 0

for

G(n, k;m) :=
2(2n+ 1)(k − 2m)(2k + 1)W (n;m)F (n, k;m)

(2n− k)(2n− k + 1)(2n+ 2m+ 1)
.

Checking initial condition, say A(m+ 1;m) = 0, proves the assertion. �

Lemma 6.6 shows that the Fourier transform of the Chebyshev-U polynomials can
be written as

(6.24) Ûn(ω) =

n∑
k=0

(−1)k+12kk!

(
n+ k + 1

2k + 1

) ∞∑
s=0

is
[
(−1)n−1−s − 1

]
(s+ k + 1)!

ωs

and differentiating j times gives

(6.25)

(
d

dω

)j
Ûn(ω) =

n∑
k=0

(−1)k+12kk!

(
n+ k + 1

2k + 1

) ∞∑
s=j

s(s− 1) · · · (s− j + 1)
is
[
(−1)n−1−s − 1

]
(s+ k + 1)!

ωs−j .

In order to use the result of Proposition 6.4, compute the derivative at ω = 0 to obtain

(6.26)

(
d

dω

)j
Ûn(ω)

∣∣∣
ω=0

=

n∑
k=0

(−1)k+12kk!

(
n+ k + 1

2k + 1

)
j!ij

[
(−1)n−1−j − 1

]
(k + j + 1)!

.

In the case n+ j even, this yields

(6.27)
2

ij

(
d

dω

)j
Ûn(ω)

∣∣∣
ω=0

= 2

n∑
k=0

(−1)k2k
(
n+ k + 1

2k + 1

)
j! k!

(k + j + 1)!
.

The previous arguments evaluate the integral Ij,n in the case j and n have the
same parity.

Proposition 6.7. Assume n+ j is even. Then

(6.28) Ij,n = 2

n∑
k=0

(−1)k2k
(
n+ k + 1

2k + 1

)
j! k!

(k + j + 1)!
.
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7. Integrals expressed in terms of the digamma function

This section discusses two entries in [12] where the integrand has a trigonometric
function and the value is given in terms of the digamma function

(7.1) ψ(x) =
d

dx
log Γ(x) =

Γ′(x)

Γ(x)
.

This function admits a variety of integral representations, starting with entry 8.361.7

(7.2) ψ(x) =

∫ 1

0

tx−1 − 1

t− 1
dt− γ

with γ = −Γ′(1) being Euler’s constant. These representations are established in [17].

Example 7.1. Entry 3.688.1 is

(7.3)

∫ π/4

0

tanν x− tanµ x

cosx− sinx

dx

sinx
= ψ(µ)− ψ(ν).

This is evaluated by writing it as

(7.4) I =

∫ π/4

0

tanν−1 x− tanµ−1 x

1− tanx

dx

cos2 x

and transforming it, by the change of variables s = tanx, into

(7.5) I =

∫ 1

0

sν−1 − sµ−1

1− s
ds.

This integral appears as entry 3.231.5 with value ψ(µ)−ψ(ν). This entry was estab-
lished as Proposition 3.1 in [18].

Example 7.2. Entry 3.624.6 is

(7.6)

∫ π/2

0

(
sin ax

sinx

)2

dx =
πa

2
− 1

2
sinπa [2aβ(a)− 1]

where

(7.7) β(x) =
1

2

[
ψ

(
x+ 1

2

)
− ψ

(x
2

)]
is defined in entry 8.370.

Proof of a special case. The proof is presented first in the case a ∈ N. In this
special case the formula becomes

(7.8)

∫ π/2

0

(
sin ax

sinx

)2

dx =
πa

2

since the factor sinπa vanishes and β(a) has a finite value.
Recall the Fejer kernel [14]

(7.9) Fn(x) =
1

n

n−1∑
k=0

Dk(x) =
1

n

(
sin nx

2

sin x
2

)2
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with

(7.10) Dk(x) =

k∑
`=−k

ei`x

satisfies

(7.11)

∫ π

0

Fn(x) dx = π.

The change of variables x = 2t and replacing n by a in (7.11) gives (7.6).

A proof by contour integration. The function f(z) = (sin(az)/ sin z)
2

is analytic
inside the rectangle with vertices P1 = (0, 0), P2 = (π/2, 0), P3 = (π/2, B) and P4 =
(0, B). Integration produces

(7.12) 0 =

∫
L

f(z)dz =

∫
L1

f(z)dz +

∫
L2

f(z)dz +

∫
L3

f(z)dz +

∫
L4

f(z)dz,

where Lj is the segment joining Pj−1 to Pj (with P4 = P0). The first integral gives
the left-hand side of (7.8). In the second integral, observe that the integrand is

(7.13)

∫
L2

f(z)dz = i

∫ B

0

sin2 [a(π/2 + it)]

cosh2 t
dt.

The integrand is of order e−2(1−a)t and letting B →∞ gives

(7.14)

∫
L2

f(z)dz = i

∫ ∞
0

sin2 [a(π/2 + it)]

cosh2 t
dt.

The identity sin2 u = 1
2 (1− cos(2u)) gives

(7.15)

∫
L2

f(z)dz =
i

2
− i cos(πa)

2

∫ ∞
0

cosh(2at)

cosh2 t
dt− sinπa

2

∫ ∞
0

sinh(2at)

cosh2 t
dt.

A similar argument gives

(7.16)

∫
L4

f(z) dz = −i
∫ ∞

0

sinh2(ax)

sinh2 x
dx

and the integral over L3 vanishes as B →∞. The real part of (7.12) now gives

(7.17)

∫ ∞
0

(
sin ax

sinx

)2

dx =
sin(πa)

2

∫ ∞
0

sinh(2ax) dx

cosh2 x
.

Now use entry 3.541.8

(7.18)

∫ ∞
0

e−ax dx

cosh2 x
= aβ

(a
2

)
− 1

(which appears incorrectly in the latest edition [12] and correctly in [11], an error
caused by the sixth author of this note) it follows that

(7.19)

∫ ∞
0

(
sin ax

sinx

)2

dx = −a sinπa

2
(β(a) + β(−a)) .
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A proof of (7.18) may be found in [6]. The result now follows from the identity

(7.20) β(a) + β(−a) = 2β(a)− π

sinπa
− 1

a

that can be verified directly from the definition of β(x) and the elementary properties

(7.21) ψ(x+ 1) = ψ(x) +
1

x
and ψ(1− x) = ψ(x) + π cot πx.

8. Integrals expressed in terms of Legendre polynomials

A variety of entries in [12] involve trigonometric functions in the integrand and the
result is given in terms of the Legendre polynomials Pn(x) defined by the Rodrigues’
formula

(8.1) Pn(x) =
1

2n n!

dn

dxn
(x2 − 1)n

(appearing as entry 8.910.2), which have the explicit formula

(8.2) Pn(x) =
1

2n

bn/2c∑
k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k

(this is entry 8.911.1) and generating function

(8.3)

∞∑
n=0

Pn(x)tn =
1√

1− 2xt+ t2
.

A selection of them is presented here. The next section contains some entries in
[12] where the integrand is a combination of Legendre polynomials and trigonometric
functions. Legendre polynomials form an orthogonal sequence on the interval [−1, 1]
with respect to the measure dµ(x) = 1[−1,1](x) dx and normalization factor

(8.4)

∫ 1

−1

P 2
n(x) dx =

2

2n+ 1
.

Sequences of orthogonal of polynomials are characterized by a three-term recurrence.
In this case, this is

(8.5) (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

with initial conditions P0(x) = 1 and P1(x) = x.

Example 8.1. The first formula is half of Entry 3.611.3 and it is the classical
Laplace-Mehler integral :

(8.6) Pn(cos θ) =
1

π

∫ π

0

(cos θ+i sin θ cosϕ)ndϕ =
1

2π

∫ 2π

0

(cos θ+i sin θ cosϕ)ndϕ.

To prove this formula, let x = cos θ and define

(8.7) Mn(x) =
1

π

∫ π

0

[
x+ i

√
1− x2 cosϕ

]n
dϕ.
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Expanding the n-th power and using (3.5) and the fact that odd powers of cosine have
vanishing integral, gives

(8.8) Mn(x) =

bn/2c∑
k=0

(−1)k

22k

(
n

2k

)(
2k

k

)
xn−2k(1− x2)k.

Expand the term (1− x2)k and reverse the order of summation to obtain

(8.9) Mn(x) =

bn/2c∑
r=0

bn/2c∑
k=r

2−2k

(
n

2k

)(
2k

k

)(
k

r

) (−1)rxn−2r.

The proof that Mn(x) is the Legendre polynomial in (8.2) is equivalent to the identity

(8.10)

bn/2c∑
k=r

2−2k

(
n

2k

)(
2k

k

)(
k

r

)
=

(2n− 2r)!

2nr!(n− r)!(n− 2r)!
, for 0 6 r 6 bn/2c .

Separating this sum according to the parity shows the next result.

Lemma 8.2. Assume the identities

(8.11)

m∑
j=0

22(m−j)(2m+ 2r)!(2m+ r)!(2m)!

(2m− 2j)!(j + r)!j!(4m+ 2r)!
= 1

and

(8.12)

m∑
j=0

22(m−j)+1(2m+ 2r + 1)!(2m+ r + 1)!(2m+ 1)!

(2m+ 1− 2j)!(j + r)!j!(4m+ 2r + 2)!
= 1

hold for all m ∈ N and all 0 6 r 6 m. This implies the Laplace-Mehler representation
(8.6) for Legendre polynomials.

It remains to confirm the assumptions of Lemma 8.2. Denote by f1(m) and f2(m),
respectively, the sums appearing in (8.11) and (8.12). The Sigma package developed
by [28] produces the trivial recurrence

(8.13) fj(m+ 1) = fj(m), for j = 1, 2 and m ∈ N.
The initial values f1(1) = f2(1) = 1 confirms that f1(m) ≡ f2(m) ≡ 1. This completes
the proof of (8.6).

Example 8.3. Entry 3.661.3 is

(8.14)

∫ π

0

(a+ b cosx)n dx = π(a2 − b2)n/2Pn

(
a√

a2 − b2

)
, for |a| > |b|.

This evaluation uses the representation

(8.15) Pn(cosh θ) =
1

π

∫ π

0

(cosh θ − sinh θ cosϕ)n dϕ

obtained by replacing θ by iθ in the Laplace-Mehler representation. To obtain the
result, write

(8.16)

∫ π

0

(a+ b cosx)n dx = (a2 − b2)n/2
∫ π

0

[
a√

a2 − b2
− (−b)√

a2 − b2
cosϕ

]n
dϕ,
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and choose the angle θ so that

(8.17) cosh θ =
a√

a2 − b2
.

This is possible since a >
√
a2 − b2. This proves the statement.

Example 8.4. The entry 3.661.4

(8.18)

∫ π

0

dx

(a+ b cosx)n+1
=

π

(a2 − b2)(n+1)/2
Pn

(
a√

a2 − b2

)
is a companion to Entry 3.661.3 established in the previous example. Introduce the
parameter θ by the relation

(8.19) cosh θ =
a√

a2 − b2
and sinh θ =

b√
a2 − b2

.

Then (8.18) is written as

(8.20) Pn(cosh θ) =
1

π

∫ π

0

du

(cosh θ + sinh θ cosu)n+1
.

To prove this identity, it is shown that the generating functions of both sides agree.
For the left-hand side, this is

(8.21)

∞∑
n=0

Pn(cosh θ) tn =
1√

1− 2t cosh θ + t2
.

On the other hand, for the right-hand side this generating function is

1

πt

∫ π

0

∞∑
n=0

[
t

cosh θ + sinh θ cosu

]n+1

du =
1

π

∫ π

0

du

(cosh θ − t) + sinh θ cosu
.

The result now follows from the elementary integral

(8.22)

∫ π

0

du

a+ b cosu
=

π√
a2 − b2

, for |a| > |b|.

Example 8.5. Entry 3.675.1 is

(8.23)

∫ π

u

sin(n+ 1
2 )x dx√

2(cosu− cosx)
=
π

2
Pn(cosu)

and its companion 3.675.2

(8.24)

∫ u

0

cos(n+ 1
2 )x dx√

2(cosx− cosu)
=
π

2
Pn(cosu)

This will be established by computing the generating function of both sides and veri-
fying that they agree. It is convenient to change the names of the variables and write
(8.23) as

(8.25) Pn(cosu) =
2

π

∫ π

u

sin(n+ 1
2 )w dw√

2(cosu− cosw)
.
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Introduce the notation x = cosu and write the generating function of (8.23) (aside
from a constant factor) as

I(x, t) :=

∫ π

u

1√
x− cosw

[ ∞∑
n=0

sin[(n+ 1
2 )w]tn

]
dw

=

∫ π

u

1√
x− cosw

Im

[
eiw/2

∞∑
n=0

(teiw)n

]
dw

=

∫ π

u

1√
x− cosw

Im

[
eiw/2

1− teiw

]
dw

= (1 + t)

∫ π

u

sin(w/2) dw√
x− cosw(1− 2t cosw + t2)

dw.

The change of variables y = cosw gives

I(x, t) =
1 + t√

2

∫ x

−1

dy√
x− y

√
1 + y(1− 2ty + t2)

=
1 + t√

2(1 + t2)

∫ x

−1

dy√
x− y

√
1 + y (1− βy)

with β = 2t/(1+t2). The change of variables x−y = (1+x) sin2 ϕ and the elementary
evaluation

(8.26)

∫ π/2

0

dϕ

1 + b sin2 ϕ
=

π

2
√

1 + b

confirm that the right-hand side of (8.23) has the same generating function as the
Legendre polynomials. This proves the first formula. The same method gives the
proof of (8.25).

9. Combinations of Legendre polynomials and trigonometric functions

This section presents two entries in [12] that contain the Legendre polynomials in
the integrand.

Example 9.1. Entry 7.244.1 states that

(9.1)

∫ 1

0

Pn(1− 2x2) sin ax dx =
π

2

[
Jn+1/2

(a
2

)]2
To verify this, let

(9.2) Ln(a) =

∫ 1

0

Pn(1− 2x2) sin ax dx

be the left-hand side of (9.1). The recurrence for the Legendre polynomials gives

(9.3) (n+ 1)Pn+1(1− 2x2) = (2n+ 1)(1− 2x2)Pn(1− 2x2)− nPn−1(1− 2x2).

Observe that

(9.4) L′′n(a) = −
∫ 1

0

x2Pn(1− 2x2) sin ax dx
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gives

(9.5) Ln(a) + 2L′′n(a) =

∫ 1

0

(1− 2x2)Pn(1− 2x2) sin ax dx.

Then (9.3) produces

(9.6) (n+ 1)Ln+1(a) = (2n+ 1)[Ln(a) + 2L′′n(a)]− nLn−1(a).

The initial conditions are

(9.7) L0(a) =
1− cos a

a
and L1(a) =

1

a3

[
4 + a2 + (a2 − 4) cos a− 4a sin a

]
.

Now it is shown that

(9.8) Rn(a) =
[
Jn+1/2

(a
2

)]2
the right-hand side of (9.1), without the factor π/2, satisfies the same recurrence and
that the initial values agree with those for Ln(a). The verification is simplified by
using the classical recurrence for Bessel functions

(9.9) Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x)

and the relation for derivatives

2J ′ν(x) = Jν−1(x)− Jν+1(x)(9.10)

4J ′′ν (x) = Jν−2(x)− 2Jν(x) + Jν+2(x).

The details are unilluminating and they are omitted.

Example 9.2. Entry 7.244.2 states that

(9.11)

∫ 1

0

Pn(1− 2x2) cos ax dx =
π

2
(−1)nJ

n+
1
2

(a
2

)
J
−n− 1

2

(a
2

)
The proof of this identity can be obtained by the method developed in the previous
example. It is convenient to simplify the right-hand side by using the Bessel-Y function

(9.12) Yν(x) =
Jν(x) cosπν − J−ν(x)

sinπν

to write (9.11) in the form

(9.13)

∫ 1

0

Pn(1− 2x2) cos ax dx = −π
2
J
n+

1
2

(a
2

)
Y
n+

1
2

(a
2

)
.

The details are left to the reader.
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10. Combinations of logarithms and trigonometric functions

Section 4.381 contains four entries where the integrands are combinations of lnx
and a basic trigonometric function. The evaluations are expressed in terms of the
cosine integral

(10.1) ci(x) = −
∫ ∞
x

cos t

t
dt = γ + lnx+

∫ x

0

cos t− 1

t
dt,

defined as entry 8.230.2 and the sine integral

(10.2) si(x) = −
∫ ∞
x

sin t

t
dt

from entry 8.230.1. The reader is encouraged to verify the equality of the two expres-
sions in (10.1).

Example 10.1. Entry 4.381.1 is

(10.3)

∫ 1

0

lnx sin ax dx = −1

a
(γ + ln a− ci(a))

The change of variables t = ax gives∫ 1

0

lnx sin ax dx =
1

a

∫ a

0

ln

(
t

a

)
sin t dt(10.4)

=
1

a

∫ a

0

ln t sin t dt− ln a

a

∫ a

0

sin t dt

=
1

a

∫ a

0

ln t sin t dt− ln a

a
(1− cos a).

Write the remaining integral as

(10.5)

∫ a

0

ln t sin t dt =

∫ a

0

ln t
d

dt
(1− cos t) dt

and integrate by parts to produce

(10.6)

∫ a

0

ln t sin t dt = (1− cos a) ln a−
∫ a

0

1− cos t

t
dt.

This gives

(10.7)

∫ 1

0

lnx sin ax dx = −1

a

∫ a

0

1− cos t

t
dt

and the result follows from (10.1). Entry 4.381.3

(10.8)

∫ 2π

0

lnx sinnx dx = − 1

n
(γ + ln(2nπ)− ci(2nπ)) ,

for n ∈ N, now follows directly from (10.3).
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Example 10.2. Entry 4.381.2 is

(10.9)

∫ 1

0

lnx cos ax dx = −1

a

(
si(a) +

π

2

)
.

The proof begins with the change of variables t = ax to produce∫ 1

0

lnx cos ax dx =
1

a

∫ a

0

ln
t

a
cos t dt(10.10)

=
1

a

∫ a

0

ln t cos t dt− ln a

a

∫ a

0

cos t dt

=
1

a

∫ a

0

ln t cos t dt− ln a

a
sin a.

Now integrate by parts to produce∫ a

0

ln t cos t dt =

∫ a

0

ln t
d

dt
sin t dt

= ln a sin a−
∫ a

0

sin t

t
dt

that gives

(10.11)

∫ 1

0

lnx cos ax dx = −1

a

∫ a

0

sin t

t
dt.

The result now follows from the definition of the sine integral and the value

(10.12)

∫ ∞
0

sin t

t
dt =

π

2
.

This is entry 3.721.1 and a variety of proofs appear in [13].
The last entry in this section, namely 4.381.4:

(10.13)

∫ 2π

0

lnx cosnx dx = − 1

n

(
si(2nπ) +

π

2

)
follows directly from (10.9).

11. Combinations of Bessel functions and trigonometric functions

There is a variety of entries in [12] where the integrand has Bessel and trigono-
metric functions. Two such entries are presented.

Example 11.1. Entry 6.671.7 states that

(11.1)

∫ ∞
0

J0(ax) sin(bx) dx =

{
0 if 0 < b < a

1/
√
b2 − a2 if 0 < a < b.

The proof uses the differential equation for J0(x):

(11.2) x
d2y

dx2
+
dy

dx
+ xy = 0,
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with initial conditions y(0) = 1 and y′(0) = 0. The Laplace transform of a function
f(x), defined by

(11.3) L[f(x)] = F (s) =

∫ ∞
0

e−sxf(x) dx

and this transform satisfies the elementary properties

(11.4) L[xf(x)] = − d

ds
F (s)

(11.5) L[f ′(x)] = sF (s)− f(0) and L[f ′′(x)] = s2F (s)− sf(0)− f ′(0).

Then the Laplace transform of (11.2) then gives

(11.6)
F ′(s)

F (s)
= − s

s2 + 1
.

This gives

(11.7) F (s) =
C√
s2 + 1

.

The value C = 1 comes from the standard relation

(11.8) lim
x→0

f(x) = lim
s→∞

sF (s),

applied to f(x) = J0(x). The value C = 1 gives the evaluation

(11.9)

∫ ∞
0

J0(x) dx = 1.

Scaling the Laplace transform of J0(x) gives

(11.10)

∫ ∞
0

e−sxJ0(ax) dx =
1√

s2 + a2
.

Replace s by ib gives

(11.11)

∫ ∞
0

J0(ax) cos bx dx− i
∫ ∞

0

J0(ax) sin bx dx =
1√

a2 − b2
.

The entry in (11.12) is obtained by matching the imaginary parts. The real parts
produce entry 6.671.8

(11.12)

∫ ∞
0

J0(ax) cos(bx) dx =

{
1/
√
a2 − b2 if 0 < b < a

0 if 0 < a < b.
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12. Combinations of hypergeometric functions and trigonometric
functions

This section discusses the evaluation of two entries in [12] where the integrand
involves trigonometric functions and the hypergeometric function

(12.1) 2F1

(
a, b

c

∣∣∣∣x) =

∞∑
k=0

(a)k (b)k
(c)k k!

xk.

The reader will find in [15] a variety of entries in [12] that involve hypergeometric
functions. Information about these classical functions can be found in [3]. The proofs
will involve two well-known transformations:

(12.2) 2F1

(
a, b

c

∣∣∣∣z) = (1− z)c−a−b2F1

(
c− a, c− b

c

∣∣∣∣z)
valid for |arg(1− z)| < π and

2F1

(
a, b

c

∣∣∣∣z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1

(
a, 1− c+ a

1− a+ b

∣∣∣∣1z
)

+(12.3)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1

(
b, 1− c+ b

1− a+ b

∣∣∣∣1z
)
.

Example 12.1. Entry 7.531.1 states that

(12.4)

∫ ∞
0

x sinµx 2F1

(
α, β

3
2

∣∣∣∣−c2x2

)
dx = 2−α−β+1πc−α−βµα+β−2Kα−β

(
µ
c

)
Γ(α)Γ(β)

for µ > 0, Reα > 1
2 , Reβ > 1

2 with its companion entry 7.531.2

(12.5)

∫ ∞
0

cosµx 2F1

(
α, β

1
2

∣∣∣∣−c2x2

)
dx = 2−α−β+1πc−α−βµα+β−1Kα−β

(
µ
c

)
Γ(α)Γ(β)

for µ > 0, Reα > 0, Reβ > 0.
The proof of (12.4) begins with the observation that the integral is convergent

provided Reα > 1 and Reβ > 1. This follows from (12.3) and the behavior of the
hyeprgeometric function at x = 0. The integral actually converges for Reα > 1

2 and

Reβ > 1
2 by using (12.3) to the integrand transformed by (12.2).

In the proof assume first that Reα > 3
2 and Reβ > 3

2 and that c > 0. The first
ingredient in the argument is Parseval’s identity

(12.6)

∫ ∞
0

f(x)g(x) dx =
1

2πi

∫ d+i∞

d−i∞
F (1− s)G(s),

where F and G are the Mellin transforms of f and g, respectively. The parameter
d is chosen so that the vertical line Re s = d lies in the intersection of the strips of
analyticity of F (1− s) and G(s) and then fix δ so that d 6 δ < 3. See [25] for details
on the Mellin transform. Let

(12.7) f(x) = x sinµx and g(x) = 2F1

(
α, β

3
2

∣∣∣∣−c2x2

)
.
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The identity

(12.8)

∫ ∞
0

xs sinµx dx =
Γ(s+ 1)

µs+1
cos
(πs

2

)
appears, in an equivalent form, as entry 3.761.4. This gives the Mellin transform of
f(x). On the other hand, the evaluation

(12.9)

∫ ∞
0

ts−1
2F1

(
a, b

c

∣∣∣∣−t) dt =
Γ(c)Γ(s)Γ(a− s)Γ(b− s)

Γ(a)Γ(b)Γ(c− s)
appears in [3, p. 86]. Therefore∫ ∞

0

xs−1
2F1

(
α, β

3
2

∣∣∣∣−c2x2

)
dx =

1

2cs

∫ ∞
0

ts/2−1
2F1

(
α, β

3
2

∣∣∣∣−t) dt

=
Γ(3/2)Γ(s/2)Γ(α− s/2)Γ(β − s/2)

2csΓ(α)Γ(β)Γ
(

3−s
2

) ,

provided min(Re 2α,Re 2β) > Re s > 0.
Parseval’s identity now gives∫ ∞
0

x sinµx 2F1

(
α, β

3
2

∣∣∣∣−c2x2

)
dx =

1

2πi

∫ d+i∞

d−i∞

Γ(2− s) sin(πs/2)

µ2−s
Γ(3/2)Γ(s/2)Γ(α− s/2)Γ(β − s/2)

2csΓ(α)Γ(β)Γ
(

3−s
2

) ds

Now insert the factor Γ(1−s/2) both in the numerator and denominator of the previous
integrand and use the reflection formula for the gamma function in the form

(12.10) Γ
(
s
2

)
Γ
(
1− s

2

)
=

π

sin(πs/2)

and the duplication formula for the gamma function

(12.11) Γ
(
1− s

2

)
Γ
(

3−s
2

)
=

√
π

21−sΓ(2− s)

to obtain

(12.12)

∫ ∞
0

x sinµx 2F1

(
α, β

3
2

∣∣∣∣−c2x2

)
dx =

√
π Γ(3/2)

2µ2Γ(α)Γ(β)

1

2πi

∫ d+i∞

d−i∞
Γ
(
α− s

2

)
Γ
(
β − s

2

)
21−s

(µ
c

)s
ds,

valid for 1 < Re s 6 d < δ 6 3. The next step is to use the evaluation

(12.13)
1

2πi

∫ m+i∞

m−i∞
2s−2a−sΓ

(s
2

+
ν

2

)
Γ
(s

2
− ν

2

)
x−s ds = Kν(ax)

that may be found in [23, p. 115]. To use this entry, replace s by α+ β− s in (12.12)
to produce the result.

The proof of (12.5) is similar, so the details are left to the reader.
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