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The integrals in Gradshteyn and Ryzhik.

Part 6: The beta function

Victor H. Moll

Abstract. We present a systematic derivation of some definite integrals in the
classical table of Gradshteyn and Ryzhik that can be reduced to the beta function.

1. Introduction

The table of integrals [2] contains some evaluations that can be derived by ele-
mentary means from the beta function, defined by

(1.1) B(a, b) =

∫ 1

0

xa−1(1 − x)b−1 dx.

The convergence of the integral in (1.1) requires a, b > 0. This definition appears as
3.191.3 in [2].

Our goal is to present in a systematic manner, the evaluations appearing in the
classical table of Gradshteyn and Ryzhik [2], that involve this function. In this part, we
restrict to algebraic integrands leaving the trigonometric forms for a future publication.
This paper complements [3] that dealt with the gamma function defined by

(1.2) Γ(a) :=

∫ ∞

0

xa−1e−x dx.

These functions are related by the functional equation

(1.3) B(a, b) =
Γ(a) Γ(b)

Γ(a + b)
.

A proof of this identity can be found in [1].

The special values Γ(n) = (n − 1)! and

(1.4) Γ
(

n + 1
2

)

=

√
π

22n

(2n)!

n!
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for n ∈ N, will be used to simplify the values of the integrals presented here. Proofs
of these formulas can be found in [3] as well as in Proposition 2.1 below.

The other property that will be employed frequently is

(1.5) Γ(a) Γ(1 − a) =
π

sin πa
.

The reader will find in [1] a proof based on the product representation of these func-
tions. A challenging problem is to produce a proof that only employs changes of
variables.

The table [2] contains some direct values:

(1.6)

∫ 1

0

xp dx

(1 − x)p
=

pπ

sin pπ

is 3.192.1 and is evaluated by identifying it as B(p + 1, 1 − p). Formula 3.192.2 is

(1.7)

∫ 1

0

xp dx

(1 − x)p+1
= −

π

sin pπ

has the value B(p + 1,−p) = Γ(p + 1)Γ(−p). Next, 3.192.3 is

(1.8)

∫ 1

0

(1 − x)p

xp+1
dx = −

π

sin pπ

and the change of variables t = 1/x in 3.192.4 produces

(1.9)

∫ ∞

1

(x − 1)p−1/2 dx

x
=

∫ 1

0

t−p−1/2(1 − t)p−1/2 dt

and this is

(1.10) B
(

1
2 − p, 1

2 + p
)

= Γ
(

1
2 − p

)

Γ
(

1
2 + p

)

=
π

cos pπ
,

as stated in [2].
Let b = 1

2 in (1.1) to obtain

(1.11)

∫ 1

0

xa−1 dx
√

1 − x
= B

(

a, 1
2

)

=
Γ(a)

√
π

Γ
(

a + 1
2

) .

The special values a = n+1 and a = n+ 1
2 appear as 3.226.1 and 3.226.2, respectively.

2. Elementary properties

Many of the properties of the beta function can be established by simple changes
of variables. For example, letting y = 1 − x in (1.1) yields the symmetry

(2.1) B(a, b) = B(b, a).
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It should not be surprising that a clever change of variables might lead to a
beautiful result. This is illustrated following Serret [4]. Start with

B(a, a) =

∫ 1

0

(x − x2)a−1 dx

= 2

∫ 1/2

0

[

1
4 −

(

1
2 − x

)2
]a−1

dx.

The natural change of variables v = 1
2 − x yields

(2.2) B(a, a) = 2

∫ 1/2

0

(

1
4 − v2

)a−1
dv.

The next step is now clear: let s = 4v2 to produce

(2.3) B(a, a) = 21−2aB
(

a, 1
2

)

.

The functional equation (1.3) converts this identity into Legendre’s original form:

Proposition 2.1. The gamma function satisfies

(2.4) Γ
(

a + 1
2

)

=
Γ(2a) Γ(1

2 )

Γ(a) 22a−1
.

In particular, for a = n ∈ N, this yields (1.4).

3. Elementary changes of variables

The integral (1.1) defining the beta function can be transformed by changes of
variables. For example, the new variable x = t/u, reduces (1.1) to

(3.1)

∫ u

0

ta−1(u − t)b−1 dt = ua+b−1B(a, b),

that appears as 3.191.1 in [2]. The effect of this change of variables is to express the
beta function as an integral over a finite interval. Observe that the integrand vanishes
at both end points. Similarly, the change t = (v − u)x + u maps the interval [0, 1] to
[u, v]. It yields

(3.2)

∫ v

u

(t − u)a−1(v − t)b−1 dt = (v − u)a+b−1B(a, b).

This is 3.196.3 in [2]. The special case u = 0, v = n and a = ν, b = n + 1 appears as
3.193 in [2] as

(3.3)

∫ n

0

xν−1(n − x)n dx =
nν+n n!

ν(ν + 1)(ν + 2) · · · (ν + n)
.

Several integrals in [2] can be obtained by a small variation of the definition. For
example, the integral

(3.4)

∫ 1

0

(1 − xa)b−1 dx =
1

a
B (1/a, b)
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can be obtained by the change of variables t = xa. This appears as 3.249.7 in [2] and
illustrates the fact that it not necessary for the integrand to vanish at both end points.
The special case a = 2 appears as 3.249.5:

(3.5)

∫ 1

0

(1 − x2)b−1 dx = 1
2B

(

1
2 , b

)

= 22b−2B(b, b),

where the second identity follows from Legendre’s duplication formula (2.4).

The change of variables t = cx produces a scaled version:

(3.6)

∫ c

0

(ca − ta)b−1 dt =
1

a
ca(b−1)+1B (1/a, b) .

The special case a = 2 yields

(3.7)

∫ c

0

(c2 − t2)b−1 dt =
c2b−1

2
B (1/2, b) .

The choice b = n + 1
2 appears as 3.249.2 in [2]:

(3.8)

∫ c

0

(c2 − t2)n−1/2 dt =
πc2n

22n+1

(

2n

n

)

.

Similarly 3.251.1 in [2] is

(3.9)

∫ 1

0

xc−1(1 − xa)b−1 dx =
1

a
B

( c

a
, b

)

.

The change of variables t = 1/x converts (1.1) into

(3.10)

∫ ∞

1

t−a−b(t − 1)b−1 dt = B(a, b).

Letting t = xp yields

(3.11)

∫ ∞

1

xp(1−a−b)−1 (xp − 1)
b−1

dx =
1

p
B(a, b).

The special case ν = b and µ = p(1 − a − b) is 3.251.3:

(3.12)

∫ ∞

1

xµ−1 (xp − 1)
ν−1

dx =
1

p
B (1 − ν − µ/p, ν) .

4. Integrals over a half-line

The beta function can also be expressed as an integral over a half-line. The change
of variables t = x/(1 − x) maps [0, 1] onto [0,∞) and it produces from (1.1)

(4.1) B(a, b) =

∫ ∞

0

ta−1 dt

(1 + t)a+b
.

In particular, if a + b = 1, using (1.3) and (1.5), we obtain

(4.2)

∫ ∞

0

ta−1 dt

1 + t
=

π

sin πa
.
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This can be scaled to produce, for a > 0 and c > 0,

(4.3)

∫ ∞

0

xa−1 dx

x + c
=

π

sinπa
ca−1 for c > 0

that appears as 3.222.2 in [2]. In the case c < 0 we have a singular integral. Define
b = −c > 0 and s = x/b, so now we have to evaluate

(4.4) I = −ba−1

∫ ∞

0

sa−1 ds

1 − s
.

The integral is considered as a Cauchy principal value

(4.5) I = lim
ǫ→0

∫ 1

0

sa−1 ds

(1 − s)1−ǫ
+

∫ ∞

1

sa−1 ds

(1 − s)1−ǫ
.

Let y = 1/s in the second integral and evaluate them in terms of the beta function to
produce

(4.6) I = lim
ǫ→0

ǫΓ(ǫ) ×
1

ǫ

(

Γ(a)

Γ(a + ǫ)
−

Γ(1 − a − ǫ)

Γ(1 − a)

)

.

Use L’Hopital’s rule to evaluate and obtain

(4.7) I = −
Γ′(a)

Γ(a)
+

Γ′(1 − a)

Γ(a)
.

Using the relation Γ(a)Γ(1 − a) = πcosec πa, this reduces to π cotπa. Therefore we
have

(4.8)

∫ ∞

0

xa−1 dx

x + c
= −

π

tanπa
(−c)a−1 for c < 0

The change of variables x = e−t produces, for c < 0,

(4.9)

∫ ∞

−∞

e−µt dt

e−t + c
= −π cot(µπ) (−c)µ−1.

The special case c = −1 appears as 3.313.1:

(4.10)

∫ ∞

−∞

e−µt dt

1 − e−t
= π cot(µπ).

We now consider several examples in [2] that are direct consequences of (4.3) and
(4.8). In the first example, we combine (4.3) with the partial fraction decomposition

(4.11)
1

(x + a)(x + b)
=

1

b − a

(

1

x + a
−

1

x + b

)

leads to 3.223.1:

(4.12)

∫ ∞

0

xµ−1 dx

(x + b)(x + a)
=

π

b − a
(aµ−1 − bµ−1)cosec(πµ).

Similarly,

(4.13)
1

x + b
−

1

x − a
=

a + b

(a − x)(b + x)
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leads to 3.223.2:

(4.14)

∫ ∞

0

xµ−1 dx

(b + x)(a − x)
=

π

a + b

(

bµ−1 cosec(µπ) + aµ−1 cot(µπ)
)

,

using (4.3) and (4.8). The result 3.223.3:

(4.15)

∫ ∞

0

xµ−1 dx

(a − x)(b − x)
= π cot(µπ)

aµ−1 − bµ−1

b − a
,

follows from

(4.16)
1

(a − x)(b − x)
=

1

a − b

(

1

b − x
−

1

a − x

)

.

Finally, 3.224:

(4.17)

∫ ∞

0

(x + b)xµ−1 dx

(x + a)(x + c)
=

π

sin(µπ)

(

a − b

a − c
aµ−1 +

c − b

c − a
cµ−1

)

,

follows from

(4.18)
x + b

(x + a)(x + c)
=

b − a

c − a

1

x + a
−

b − c

c − a

1

x + c
.

We can now transform (4.1) to the interval [0, 1] by splitting [0,∞) as [0, 1] followed
by [1,∞). In the second integral, we let t = 1/s. The final result is

(4.19) B(a, b) =

∫ 1

0

ta−1 + tb−1

(1 + t)a+b
dt.

This formula, that appears as 3.216.1, makes it apparent that the beta function is
symmetric: B(a, b) = B(b, a). The change of variables s = 1/t converts (4.19) into
3.216.2:

(4.20) B(a, b) =

∫ ∞

1

sa−1 + sb−1

(1 + s)a+b
ds.

It is easy to introduce a parameter: let c > 0 and consider the change of variables
t = cx in (4.1) to obtain

(4.21)

∫ ∞

0

xa−1 dx

(1 + cx)a+b
= c−aB(a, b),

that appears as 3.194.3. We can now shift the lower limit of integration via t = x+u
to produce

(4.22)

∫ ∞

u

(t − u)a−1(t + v)−a−b dt = (u + v)−bB(a, b),

where v = 1/c − u. This is 3.196.2, where v is denoted by β. Now let b = c − a in
the special case v = 0 to obtain

(4.23)

∫ ∞

u

(t − u)a−1t−c dt = ua−cB(a, c − a).

This appears as 3.191.2.
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We now write (4.1) using the change of variables t = xc. It produces

(4.24)

∫ ∞

0

xac−1 dx

(1 + xc)a+b
=

1

c
B(a, b).

The special case c = 2 and a = 1 + µ/2, b = 1 − µ/2 produces 3.251.6 in the form

(4.25)

∫ ∞

0

xµ+1 dx

(1 + x2)2
=

µπ

4 sin µπ/2
.

Now let b = 1 − a and choose a = p/c to obtain

(4.26)

∫ ∞

0

xp−1 dx

1 + xc
=

1

c
B

(

p

c
,
c − p

c

)

=
π

c
cosec(πp/c).

This appears as 3.241.2 in [2].

Similar arguments establish 3.196.4:

(4.27)

∫ ∞

1

dx

(a − bx)(x − 1)ν
= −

π

b
cosec(νπ)

(

b

b − a

)ν

.

Indeed, the change of variables t = x − 1 yields

(4.28)

∫ ∞

1

dx

(a − bx)(x − 1)ν
=

∫ ∞

0

dt

[(a − b) − bt] tν
,

and scaling via the new variable z = bt/(b − a) gives

(4.29)

∫ ∞

1

dx

(a − bx)(x − 1)ν
= −

1

b

(

b

b − a

)ν ∫ ∞

0

dz

(1 + z) zν
.

The result follows from (4.1) and the value

(4.30) B(ν, 1 − ν) = Γ(ν)Γ(1 − ν) =
π

sinπν
.

The same argument gives 3.196.5:

(4.31)

∫ 1

−∞

dx

(a − bx)(1 − x)ν
=

π

b
cosec(νπ)

(

b

a − b

)ν

.

5. Some direct evaluations

There are many more integrals in [2] that can be evaluated in terms of the beta
function. For example, 3.221.1 states that

(5.1)

∫ ∞

a

(x − a)p−1 dx

x − b
= π(a − b)p−1 cosec πp.

To establish these identities, we assume that a > b to avoid the singularities. The
change of variables t = (x − a)/(a − b) yields

(5.2)

∫ ∞

a

(x − a)p−1 dx

x − b
= (a − b)p−1

∫ ∞

0

tp−1 dt

1 + t
,

and this integral appears in (4.2).
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Similarly, 3.221.2 states that

(5.3)

∫ a

−∞

(a − x)p−1 dx

x − b
= −π(b − a)p−1 cosec πp.

This is evaluated by the change of variables y = (a − x)/(b − a).

The table contains several evaluations that are elementary corollaries of (4.1).
Starting with

(5.4)

∫ ∞

0

xa dx

(1 + x)b
= B(a + 1, b − a − 1) =

Γ(a + 1)Γ(b − a − 1)

Γ(b)
,

we find the case a = p and b = 3 in 3.225.3:

(5.5)

∫ ∞

0

xp dx

(1 + x)3
=

Γ(p + 1)Γ(2 − p)

Γ(3)
=

p(1 − p)

2

π

sin(pπ)
,

using elementary properties of the gamma function.

The change of variables t = 1 + x converts (5.4) into

(5.6)

∫ ∞

1

(t − 1)a dt

tb
= B(a + 1, b − a − 1) =

Γ(a + 1)Γ(b − a − 1)

Γ(b)
.

The special case a = p − 1 and b = 2 gives

(5.7)

∫ ∞

1

(t − 1)p−1 dt

t2
= Γ(p)Γ(2 − p) = (1 − p)Γ(p)Γ(1 − p) =

π(1 − p)

sin(pπ)
.

This appears as 3.225.1. Similarly, the case a = 1 − p and b = 3 produces 3.225.2:

(5.8)

∫ ∞

1

(t − 1)1−p dt

t3
=

Γ(2 − p)Γ(1 + p)

Γ(3)
=

1

2
p(1 − p)Γ(p)Γ(1 − p) =

π p(1 − p)

2 sin(pπ)
.

6. Introducing parameters

It is often convenient to introduce free parameters in a definite integral. Starting
with (4.1), the change of variables t = u

v xc yields

(6.1) B(a, b) = cuavb

∫ ∞

0

tac−1 dt

(v + utc)a+b
.

This formula appears as 3.241.4 in [2] with the parameters

(6.2) a =
µ

ν
, b = n + 1 −

µ

ν
, c = ν, u = q, and v = p,

in the form
∫ ∞

0

xµ−1 dx

(p + qxν)n+1
=

1

ν pn+1

(

p

q

)µ/ν
Γ(µ/ν) Γ(n + 1 − µ/ν)

Γ(n + 1)
.

This is a messy notation and it leaves the wrong impression that n should be an integer.
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• The special case v = c = 1 and b = p + 1 − a produces

(6.3)

∫ ∞

0

ta−1 dt

(1 + ut)p+1
=

1

ua
B(a, p + 1 − a).

This appears as 3.194.4 in [2], except that it is written in terms of binomial coefficients
as

(6.4)

∫ ∞

0

ta−1 dt

(1 + ut)p+1
= (−1)p π

ua

(

a − 1

p

)

cosec(πa).

We prefer the notation in (6.3).

• The special case v = c = 1 and b = 2 − a produces

(6.5)

∫ ∞

0

ta−1 dt

(1 + ut)2
=

1

ua
B(a, 2 − a).

Using (1.3) and (1.5) yields the form

(6.6)

∫ ∞

0

ta−1 dt

(1 + ut)2
=

(1 − a)π

ua sin πa
.

This appears as 3.194.6 in [2].

• The special case u = v = 1 and c = q, and choosing a = p/q and b = 2 − p/q yields
3.241.5 in the form

(6.7)

∫ ∞

0

xp−1 dx

(1 + xq)2
=

q − p

q2

π

sin(πp/q)
.

• The special case c = 1 and a = m + 1, b = n − m − 1
2 produces

(6.8)

∫ ∞

0

tm dt

(v + ut)n+
1
2

=
1

um+1 vn−m−
1
2

B
(

m + 1, n − m − 1
2

)

Using (1.3) and (1.4) this reduces to

(6.9)

∫ ∞

0

tm dt

(v + ut)n+
1
2

=
m! n! (2n− 2m − 2)!

(n − m − 1)! (2n)!
22m+2 vm−n+1/2

um+1
,

for m, n ∈ N, with n > m. This appears as 3.194.7 in [2].

• The special case u = v = 1 and b = 1
2 − a yields

(6.10)

∫ ∞

0

tac−1 dt
√

1 + tc
=

1

c
B

(

a, 1
2 − a

)

.

Writing a = p/c we recover 3.248.1:

(6.11)

∫ ∞

0

tp−1 dt
√

1 + tc
=

1

c
B

(

p
c , 1

2 − p
c

)

.
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• Now replace v by v2 in (6.1). Then, with u = 1, a = 1
2 , c = 2, so that ac = 1

and b = n − 1
2 we obtain

(6.12)

∫ ∞

0

dt

(v2 + t2)n
=

1

2v2n−1
B

(

1
2 , n − 1

2

)

.

This can be written as

(6.13)

∫ ∞

0

dt

(v2 + t2)n
=

√
π Γ(n − 1/2)

2Γ(n)v2n−1

that appears as 3.249.1 in [2].

• The special case v = 1, c = 2 and b = n
2 − a in (6.1) yields

(6.14)

∫ ∞

0

t2a−1 dt

(1 + ut2)n/2
=

1

2ua
B

(

a, n
2 − a

)

.

Now a = 1/2 gives

(6.15)

∫ ∞

0

(1 + ut2)−n/2 dt =
1

2
√

u
B

(

1
2 , n−1

2

)

=

√
π

2
√

u

Γ(n−1
2 )

Γ(n/2)
.

It is curious that the table [2] contains 3.249.8 as the special case u = 1/(n − 1) of
this evaluation.

• We now put u = v = 1 and c = 2 in (6.1). Then, with b = 1−ν−a and a = µ/2,
we obtain 3.251.2:

(6.16)

∫ ∞

0

tµ−1 dt

(1 + t2)1−ν
=

1

2
B

(µ

2
, 1 − ν −

µ

2

)

.

• We now consider the case c = 2 in (6.1):

(6.17)

∫ ∞

0

t2a−1 dt

(v + ut2)a+b
=

1

2uavb
B(a, b).

The special case a = m + 1
2 and b = n − m + 1

2 yields

(6.18)

∫ ∞

0

t2m dt

(v + ut2)n+1
=

Γ(m + 1/2) Γ(n− m + 1/2)

2um+1/2vn−m+1/2Γ(n + 1)
,

and using (1.4) we obtain 3.251.4:

(6.19)

∫ ∞

0

t2m dt

(v + ut2)n+1
=

π(2m)!(2n − 2m)!

22n+1m!(n − m)!n! um+1/2vn−m+1/2
,

for n, m ∈ N with n > m.
On the other hand, if we choose a = m + 1 and b = n − m we obtain 3.251.5:

(6.20)

∫ ∞

0

t2m+1 dt

(v + ut2)n+1
=

Γ(m + 1)Γ(n − m)

2um+1vn−mΓ(n + 1)
=

m!(n − m − 1)!

2n!um+1vn−m
.
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Several evaluation in [2] come from the form

(6.21)

∫ 1

0

taq−1(1 − tq)b−1 dt =
1

q
B(a, b),

obtained from (1.1) by the change of variables x = tq.

• The choice a = 1 + p/q and b = 1 − p/q produces

(6.22)

∫ 1

0

tp+q−1(1 − tq)−p/q dt =
1

q
B

(

1 +
p

q
, 1 −

p

q

)

=
pπ

q2
cosec

(

pπ

q

)

.

This appears as 3.251.8.

• The choice a = 1/p and b = 1 − 1/p gives

(6.23)

∫ 1

0

xq/p−1(1 − xq)−1/p dx =
1

q
B

(

1

p
, 1 −

1

p

)

=
π

q
cosec

(

π

p

)

.

This appears as 3.251.9.

• The reader can now check that the choice a = p/q and b = 1 − p/q yields the
evaluation

(6.24)

∫ 1

0

xp−1(1 − xq)−p/q dx =
1

q
B

(

p

q
, 1 −

p

q

)

=
π

q
cosec

(

pπ

q

)

.

This appears as 3.251.10.

• Putting v = 1 and b = ν − a in (6.1) we get

(6.25)

∫ ∞

0

tac−1 dt

(1 + utc)ν
=

1

cua
B(a, ν − a).

Now let a = r/c to obtain

(6.26)

∫ ∞

0

tr−1 dt

(1 + utc)ν
=

1

cur/c
B

(r

c
, ν −

r

c

)

.

This appears as 3.251.11.

• We now choose b = 1 − 1/q in (6.21) to obtain

(6.27)

∫ 1

0

taq−1 dt
q
√

1 − tq
=

1

q
B

(

a, 1 −
1

q

)

.

Finally, writing a = c − (m − 1)/q gives the form

(6.28)

∫ 1

0

tcq−m dt
q
√

1 − tq
=

1

q
B

(

c +
1

q
−

m

q
, 1 −

1

q

)

.

The special case q = 2 produces

(6.29)

∫ 1

0

t2c−m dt
√

1 − t2
= 1

2B
(

c + 1
2 − m

2 , 1
2

)

=
Γ(c + 1

2 − m
2 )

√
π

2Γ(c + 1 − m
2 )

.
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In particular, if c = n + 1 and m = 1 we obtain 3.248.2:

(6.30)

∫ 1

0

t2n+1 dt
√

1 − t2
=

√
π n!

2Γ(n + 3/2)
=

22n n!2

(2n + 1)!
.

Similarly, c = n and m = 0 yield 3.248.3:

(6.31)

∫ 1

0

t2n dt
√

1 − t2
=

π

22n+1

(2n)!

n!2
=

π

22n+1

(

2n

n

)

.

In the case q = 3 we get

(6.32)

∫ 1

0

t3c−m dt
3
√

1 − t3
=

1

3
B

(

c +
1

3
−

m

3
, 1 −

1

3

)

.

This includes 3.267.1 and 3.267.2 in [2]:
∫ 1

0

t3n dt
3
√

1 − t3
=

2π

3
√

3

Γ(n + 1
3 )

Γ(1
3 ) Γ(n + 1)

∫ 1

0

t3n−1 dt
3
√

1 − t3
=

(n − 1)!Γ(2
3 )

3Γ(n + 2
3 )

The latest edition of [2] has added our suggestion

(6.33)

∫ 1

0

t3n−2 dt
3
√

1 − t3
=

Γ(n − 1
3 ) Γ(2

3 )

3Γ(n + 1
3 )

as 3.267.3.

7. The exponential scale

We now present examples of (1.1) written in terms of the exponential function.
The change of variables x = e−ct in (1.1) yields

(7.1)

∫ ∞

0

e−at(1 − e−ct)b−1 dt =
1

c
B

(a

c
, b

)

.

This appears as 3.312.1 in [2]. On the other hand, if we let x = e−ct in (4.1) we get

(7.2)

∫ ∞

−∞

e−act dt

(1 + e−ct)a+b
=

1

c
B(a, b).

This appears as 3.313.2 in [2]. The reader can now use the techniques described
above to verify

(7.3)

∫ ∞

−∞

e−µx dx

(eb/a + e−x/a)ν
= a exp

[

b
(

µ −
ν

a

)]

B (aµ, ν − aµ) ,

that appears as 3.314. The choice b = 0, ν = 1 and relabelling parameters by a = 1/q
and µ = p yields 3.311.3:

(7.4)

∫ ∞

−∞

e−px dx

1 + e−qx
=

1

q
B

(

p

q
, 1 −

p

q

)

=
π

q
cosec

(

πp

q

)

,
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using the identity B(x, 1− x) = πcosec(πx) in the last step. This is the form given in
the table.

The integral 3.311.9:

(7.5)

∫ ∞

−∞

e−µx dx

b + e−x
= πbµ−1 cosec(µπ)

can be evaluated via the change of variables t = e−x/b and (4.2) to produce

(7.6) I = bµ−1

∫ ∞

0

tµ−1 dt

1 + t
.

8. Some logarithmic examples

The beta function appears in the evaluation of definite integrals involving loga-
rithms. For example, 4.273 states that

(8.1)

∫ v

u

(

ln
x

u

)p−1 (

ln
v

x

)q−1 dx

x
= B(p, q)

(

ln
v

u

)p+q−1

.

The evaluation is simple: the change of variables x = ut produces, with c = v/u,

(8.2) I =

∫ c

1

lnp−1 t (ln c − ln t)q−1 dt

t
.

The change of variables z = ln t
ln c give the result.

A second example is 4.275.1:

(8.3)

∫ 1

0

[

(− lnx)q−1 − xp−1(1 − x)q−1
]

dx =
Γ(q)

Γ(p + q)
[Γ(p + q) − Γ(p)] ,

that should be written as

(8.4)

∫ 1

0

[

(− lnx)q−1 − xp−1(1 − x)q−1
]

dx = Γ(q) − B(p, q).

The evaluation is elementary, using Euler form of the gamma function

(8.5) Γ(q) =

∫ 1

0

(− lnx)q−1 dx.

9. Examples with a fake parameter

The evaluation 3.217:

(9.1)

∫ ∞

0

(

bpxp−1

(1 + bx)p
−

(1 + bx)p−1

bp−1xp

)

dx = π cotπp

has the obvious parameter b. We say that this is a fake parameter in the sense that
a simple scaling shows that the integral is independent of it. Indeed, the change
of variables t = bx shows this independence. Therefore the evaluation amounts to
showing that

(9.2)

∫ ∞

0

(

tp−1

(1 + t)p
−

(1 + t)p−1

tp

)

dt = π cotπp.
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To achieve this, we let y = 1/t in the second integral to produce

(9.3) lim
ǫ→0

∫ ∞

0

tp−1−ǫ dt

(1 + t)p
−

∫ ∞

0

tǫ−1 dt

(1 + t)1−p
.

The integrals above evaluate to B(p − ǫ, ǫ) − B(ǫ, 1 − p − ǫ). Using

(9.4) B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
and Γ(a)Γ(1 − a) =

π

sin(πa)

this reduces to

(9.5) I = lim
ǫ→0

ǫΓ(ǫ)

(

Γ(p − ǫ)Γ(p + ǫ) sin(π(p + ǫ)) − Γ2(p) sin(πp)

ǫΓ(p)Γ(p + ǫ) sin(π(p + ǫ))

)

.

Now recall that

(9.6) lim
ǫ→0

ǫΓ(ǫ) = 1

and reduce the previous limit to

(9.7) I =
1

Γ2(p) sin(πp)
lim
ǫ→0

1

ǫ

(

Γ(p − ǫ)Γ(p + ǫ) sin(π(p + ǫ)) − Γ2(p) sin(πp)
)

.

Using L’Hopital’s rule we find that I = π cot(πp) as required.

The example 3.218

(9.8)

∫ ∞

0

x2p−1 − (a + x)2p−1

(a + x)p xp
dx = π cotπp

also shows a fake parameter. The change of variable x = at reduces the integral above
to

(9.9)

∫ ∞

0

t2p−1 − (1 + t)2p−1

(1 + t)p tp
dt = π cotπp

This can be written as

(9.10) I =

∫ ∞

0

(

tp−1

(1 + t)p
−

(1 + t)p−1

tp

)

dt.

The result now follows from (9.2).

10. Another type of logarithmic integral

Entry 4.251.1 is

(10.1)

∫ ∞

0

xa−1 lnx

x + b
dx =

π ba−1

sin πa
(ln b − π cotπa) .

To check this evaluation we first scale by x = bt and obtain

(10.2)

∫ ∞

0

xa−1 lnx

x + b
dx = ba−1 ln b

∫ ∞

0

ta−1 dt

1 + t
+ ba−1

∫ ∞

0

ta−1 ln t

1 + t
dt.
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The first integral is simply

(10.3)

∫ ∞

0

ta−1 dt

1 + t
= B(a, 1 − a) = Γ(a)Γ(1 − a) =

π

sin πa
.

The second one is evaluated as

(10.4)

∫ ∞

0

ta−1 ln t

1 + t
dt = −π2 cosπa

sin2(πa)

by differentiating (4.1) with respect to a. The evaluation follows from here.

11. A hyperbolic looking integral

The evaluation of 3.457.3:

(11.1)

∫ ∞

−∞

xdx

(a2ex + e−x)µ
= −

1

2aµ
B

(µ

2
,
µ

2

)

ln a,

is done as follows: write

(11.2) I =
1

aµ

∫ ∞

−∞

xdx

(aex + a−1e−x)µ

and let t = aex to produce

(11.3) I =
1

aµ

∫ ∞

0

tµ−1 (ln t − ln a) dt

(1 + t2)µ
.

The change of variables s = t2 yields

(11.4) I =
1

4aµ

∫ ∞

0

sµ/2−1 ln s ds

(1 + s)µ
−

ln a

2aµ

∫ ∞

0

sµ/2−1 ds

(1 + s)µ
.

The first integral vanishes. This follows directly from the change s 7→ 1/s. The second
integral is the beta value indicated in the formula.

In particular, the value a = 1 yields

(11.5)

∫ ∞

−∞

xdx

coshµ x
= 0.

Differentiating with respect to µ produces

(11.6)

∫ ∞

−∞

x ln coshxdx = 0,

that appears as 4.321.1 in [2].
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