THE DEFINITION OF BERNOULLI NUMBERS

The exponential function
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is one of the basic functions. Observe that ¢* — 1 vanishes at z = 0, so the function

e’ —1
2 =
) Ja) =
has a nice expansion at z = 0 given by
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The question considered here is the coefficients in the expansion of the reciprocal
function
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called the Bernoulli numbers.
Multiplying the series for f and its reciprocal will give a recurrence for the

Bernoulli numbers:
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and we conclude that By = 1 and
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This last relation may be written as
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Solving for the term B, gives the recurrence
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It follows directly from here that B, is a rational number.

The recurrence (7) gives By = —1. It turns out that this is the only non-vanishing

odd Bernoulli number. This follows directly from the expansion
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The Bernoulli numbers appear in several series expansion. For instance, observe

that
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The relation (8) implies

. g(2iu) ) 1 Br .. \n
cotu = z( + o )—2( +i E !(2zu)

n=0
Since By = —1/2 is the only odd Bernoulli number, we obtain
)
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This gives
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Using the trigonometric identity
(11) tanu = cotu — 2 cot(2u)
gives the expansion
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The sign of the Bernoulli numbers is easy to discover. A nice of proof of the
correct expression for them was given by Mordell [1]. It is based on the identity

T T 2z =

1 = - = -3 (2% - 1) Bya®.
(13) e?+1 er—1 -1 ;( ) Baz
Multiply this relation by x/(e” — 1) to obtain the recurrence
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Introduce the notation
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and then (14) becomes
92 1 /2
(16) by = z_:l T (2T> byba—r.
The initial value is by = Bs > 0 and the positivity of b, is propagated from this
last recurrence.

Now we know that b, is a positive rational number. On a separate note you will
find a proof of a result of von Staudt and Clausen that determines a formula for its
denominator: the denominator of Bs, is the product of all the primes p such that
p — 1 divides 2n. For example the primes p = 2 and p = 3 always appear as factors
of the denominator. The proof is not so simple. The structure of the numerator of
Bs,, is even more mysterious.
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