THE EXPANSION OF BERNOULLI POLYNOMIALS IN
FOURIER SERIES

This note contains the details of the expansion in Fourier series of By, (x).

Assume that the function f(z) is periodic of period T'. Then it is determined by
its values on the interval [—7/2, T'/2]. Under some simple hypothesis, the function
admits an expansion of the form

0 i )_a0+zancos(27rnx> Zb Sm(27rnx)

n=1

The coefficients a,, and b,, are called the Fourier coefficients of f.

To evaluate the coefficients we use the orthogonality of the functions sin and cos
that appear in (1). This simply means that

T/2 2mnx 2mmx
2 / cos( )sin( )dsz
( ) _T/2 T T

for all n, m € N, also

T/2 2mnx 2mma

(3) / cos < ) cos < > dx =0
7T/2 T T

(4) / sin ( an) sin( me) drx =0

for n, m € N and m # n and finally

T/2 9 T/2 9 T
(5) / sin? ( 7'("11.%‘) dx :/ cos? ( ﬂnx) de = —.
—T/2 T —T/2 T 2
To evaluate the coefficient b,., multiply (1) by sin(27rz/T) and integrate over the

interval [=T'/2, T/2]. All the resulting integral vanish except the one corresponding
to the index r. This gives

T/2 9
(6) :—/ sin( 7;%> dx forr > 1.

T/2

Similarly
T/2 9

(7) —/ cos( 7Tm:> dx  forr > 1.
T/2 T

The coefficient aq is special: its formula is
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The goal is to compute the Fourier expansion of the Bernoulli polynomials. We
start with

(9) Bi(z) =z — 1.

Of course these are not periodic functions, so what I mean is to take the function
Bj(z) over a certain interval and then extend in a periodic form.

To start, take

(10) f)=2 on [-3, 1].
In this case T'=1 and the Fourier coefficients are
(11) an, =0, foralln >0
because f(z) is odd and
1/2 1/2 (_1)n+1
(12) by, = 2/ xsin (2mnx) dz = 4/ zsin (2mnx) doe = ———
—-1/2 0 ™

for n > 1. Therefore the Fourier expansion is

e (_1)n+1
(13) T = Z — sin(2rnx), for — 1 <z < 3.
n=1

Now shift to the interval [0, 1] using y = 2 — 1/2 (and then writing = instead of y)
to obtain

o -1 n+1
(14) x—%zz%sin [2mn(z —1)], for0<az <1
n=1

Note that one has to be careful with the continuity issues at the end of the interval:
at = 0 the left-hand side of (14) becomes —1/2 and the right-hand side gives 0.

The left-hand side of (14) is the first Bernoulli polynomial. To make it periodic,
recall the fractional part of x, defined by

(15) {z} =2 —[a],
where [z] is the integer part of z; this is the largest integer less or equal than z.
Then (14) becomes

N Vi

(16) Bi(fa}) =) ~——

™

sin [2mn(z — 3)], for z € R.

n=1

Now go back to the interval [0, 1] and write (16) in the form

(17) Bi(z) = nz::l (*7137:“ sin [2mn(z — 3)],  for z € [0,1].
Recall the basic property

(18) Bl (x) = nB,_1()

that gives

(19) By(x) = 2B (x)

and (17) now becomes

(20) %B;(x) = Z % sin [2mn(z — 1)],  for z €[0,1].

n=1
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Integrate to obtain

(21) %BQ(:E) _ i (—1)"*1 cos [27‘(‘7’1(1; _ %)}

n=1

+ Cy,
™ 2mn

where (5 is a constant of integration. The constant of integration is obtained from
the normalization

1

(22) / B,(z)dx =0 foralln>1.
0

Using

1 1/2 1 ™
(23) / cos [2mn (z — 1)] do = / cos [2mnt] dt = 5o cossds =0
0 —1/2 ™

—Tn

gives Co = 0 and (21) becomes

(24) By(z) = -2 i (—71T)7:+1 cos [27;7;(5 -]

This can be written in the form

() 1
(25) By(z) = —4 Z W cos [2mn(z — )], for0<az <1

The series in (27) converges uniformly because
n+1

—4 Z cos [2mn(z — < 7% i %

and the uniform convergence follows from Weierstrass M-test. Therefore it is valid
to evaluate both sides at an interior point.
1

To get an idea of what is coming, observe that = = 5 in (25) gives

1 o (—1)nt!
(27) B, <2> = 742_:1 ((273”)2

Now recall that

(26)

(28) By(z) = 2% —a + %

and therefore

(29) B, (;) = —%.

X 1\n 7.[.2
(30) Z( _ T

n? 12

n=1
In order to reduce (30) to a more familiar form, split the index n in the series
according to parity to obtain

oo oo

(31)

_ 2
n=1 k=1 (Qk 1) k=1
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and use

1 1 =1 IN\e=1 31
(32) ZM‘Z;@Z(%)Q‘@QZWMZH

= (1) 31 11 11
(33) 2oa ciEtilm T i

=1 T
(34) > S=—.
n=1 ’I’L2 6

Now go back to (25) (that I am copying here to make it easier to read)
1)n+1

(35) By(z) = -4 ((_2

)2 cos [2mn(z — 1)], for0<z<1

and use the relation (18) with n = 3 to get

(36) Bi(x) = 3By(x).
Integrate to obtain
2\ (—1)*+ sin [27n(z — 3)]
B =—-12
(87) 3() nzz:l (2mn)? 2mn + s

for some constant of integration Cs. To obtain the value of C3 use the analogue of
(23) in the form

1/2 ™

1
1
(38) / sin [2mn (z — 3)] do = / sin [27nt] dt = — sinsds =0
0 —1/2 27 —7mn
and conclude that C3 = 0. Therefore
— (="t

(39) Bs(x) =—2-31) "G

n=1
simply gives

sin [2mn(z — 3)] .

1
(40) Bs (3) =0.

This is clear from

This time, replacing x =

(41) Bs(z) = a® — g;ﬁ + g
Now compare the forms

0 -1 n+1

(42) Bsy(z) = —2-2! Z ((277)”)2 cos [2mn(z — )]
n=1

and

o (=)t |

n=1

to guess a general pattern.
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Now use the relation (18) with n =4 to get
(44) Bj(z) = 4B3(x)
and integrate (39) to get

n+1

(45) )=2- 4'2 cos [2mn(z — 1)]

where the constant of integration vanishes as before.
Iterating this process leads to

0 n+1
(46) Boy(z) = (2k)! Z cos [2mn(z — 1)]

To prove this result by induction, use
(47) By y1 () = (2k + 1) Bay()
and integrate (46) to produce

St 1 n+1
Bopii(z) = (2k+1) x 2(=1)% - (2k)! ((2777)1)% 5 sin [2mn(z — )]
n=1
& (_1)n+1
= 2(=1)F- 2k +1)! Z ()71 sin [27m(x — %)] ,
n=1
and integrating
(48) Bipya(z) = (2k + 2) Bak41(x)
to get
k+1 o~ (=Dt 1
(49)  Baopio(z) = 2(=1)F . (2k + 2)! Z T 78 © [2mn(z — 3)]
n:l
This proves (46) by induction.
Using (46) yields
Bopia(x) = (2k+1)Bay(x)
oo n+1
= 2(=1D)*-(2k+1)! Z %_H cos [2mn(z — 3)]
n:l
Now integrate to get
oo n+1
(50) Bojpi1(x) =2(-1)" - (2k+ 1 Z 2k+1 sin [27rn(x — %)]

This is summarized in the next statement. As before the extension of the poly-
nomial P(x) is given by P({z}).

Theorem 1. The Fourier series for the periodic extensions of the Bernoulli poly-
nomials is given by

(51) Bor({z}) = 2(=1)F - (2k) 'Z Dl cos [2mn(z — 1)]
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and
oo _1\n+1
(52)  Bawpi({z}) =2(=1)" - 2k + 1)! Z (émlﬁzkﬂ sin [27n(z — 3)] -
Now replace z = 0 in (51) to obtain
(53) Bor(0) = 2(—1)F1 - (2k)! ; m

This is now written in a more familiar form. Recall the form of the Bernoulli
polynomial

(54) B,(z) = Z <’"> Bja"

and, using z = 0, gives

(55) B,(0) = B,.
Therefore (53) is written as

2(=1)F 1 (2k) & 1
(56) Bai, = T et > T

n=1

Definition 2. The Riemann zeta function
oo

1
(57) () =) —
n
n=1
Theorem 3. The special value of the Riemann zeta function ((2k) at an even

integer is a rational multiple of ©2F. The explicit expression is given by

2k—1
(58) C(2k) = 2

(2k)' (_1)k—1B2k % ﬂ_2k

Corollary 4. The sign of the Bernoulli number Bay, is (—1)F71.



