LARRY GLASSER’S THEOREM FOR BEUKERS INTEGRALS

In [1], the author established the identity
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Taking f(s) =1/(1 — s), this produces the simplest Beukers’ integral
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To prove the formula, observe that by symmetry
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where R is the interior of the triangle with vertices (0,0), (1,0), (1,1). Make the
change of variables
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with jacobian
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The region R is mapped onto the interior of the triangle with vertices (0,0), (1,0), (0,1).
Therefore
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The change of variables t = 2/uy gives
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This implies
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In order to transform this integral, we would like to introduce a new variable x such
that
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Squaring this gives a quadratic equation for u with solutions
v = 14+ 2sinhzcoshz + 2sinh?x
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Choosing the minus sign gives u = e~ ?* with 2 moving from 0 to +oo (the choice
of plus sign gives the same result). This implies
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The change of variables s = e~ 2% gives
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as claimed.
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