
ORTHOGONAL POLYNOMIALS AND THE TODA

EQUATIONS

The type of results that appeal to me and I try to include them in my
classes is unexpected relations among subjects that apriori seem unre-
lated. This connections might be clear to the expert, but the students seem
to enjoy them. Here is one of them:

Start with a sequence of polynomials {pn} with deg pn = n. Then, for
any fixed k ∈ N, the set {p0, p1, · · · , pk} is a basis for the vector space Vk of
polynomials of degree at most k. It is often convenient to assume that this
basis is orthonormal with respect to an inner product defined on Vk. This
can be given in terms of a positive measure by the rule

〈f, g〉 =

∫
I
f(x)g(x)dµ(x).

and the condition of orthonormality is simply that

〈pk, pj〉 =

{
1 if k = j,

0 if k 6= j

For readers unaware of measures just think of this inner product as given
by a weight w in the form

〈f, g〉 =

∫
I
f(x)g(x)w(x) dx.

The Gram-Schmidt process takes a basis for a vector space with an inner
product and returns an orthonormal basis. This is simply the way you take
3 linearly independent vectors in R3 and make them perpendicular to each
other by use of projections. The text [1] contains a very nice description of
these ideas.

Now we start with {pn}, a sequence of orthonormal polynomials with
respect to a positive measure µ, and assume deg pn = n. Then∫

R
pn(x)pm(x) dµ(x) = δnm =

{
1 if n = m

0 if n 6= m.

Since xpn(x) is a polynomial of degree n+ 1, one has

(1) xpn(x) =

n+1∑
j=1

uj,npj(x),
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for some coefficients uj,n. Multiply by pr(x), in the range 1 ≤ r ≤ n + 1,
and integrate to obtain∫

xpn(x)pr(x) dµ(x) =
n+1∑
j=1

uj,n

∫
pj(x)pr(x) dµ(x) = ur,n,

by orthogonality. Then

ur,n =

∫
xpn(x)pr(x) dµ(x) =

∫
pn(x) (xpr(x)) dµ(x).

If r+1 < n, then the polynomial xpr(x) (being of degree r+1) is orthogonal
to pn(x) and this implies ur,n = 0. Then (1) reduces to

(2) xpn(x) = un−1,npn−1(x) + un,npn(x) + un+1,npn+1(x).

Denote un−1,n by an and observe that

(3) an = un−1,n =

∫
xpn(x)pn−1(x) dµ(x).

Now

(4) un+1,n =

∫
xpn(x)pn+1(x) dµ(x) =

∫
xpn+1(x)pn(x) dµ(x) = an+1.

Denote bn = un,n to obtain from (2)

(5) xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x),

that is,

(6) an+1pn+1(x) + (bn − x)pn(x) + anpn−1(x) = 0.

Therefore the three-term relation has been expressed in terms of two se-
quences {an} and {bn}.

Theorem 1. Let {pn} be a sequence of orthonormal polynomials with
respect to a positive measure µ. Assume that all the moments of dµ are
finite. Then there is a third order recurrence of the form

an+1pn+1(x) = (x− bn)pn(x)− anpn−1(x),

where

an =

∫
xpn(x)pn−1(x) dµ(x) and bn =

∫
xp2n(x) dµ(x).

Let γn be the leading coefficient of pn. Comparing the leading coefficients
in (6) gives

an+1 =
γn
γn+1

.

Introduce

Pn(x) =
1

γn
pn(x),
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the monic version of the polynomials {pn}. Then the three-term recurrence
becomes

xγnPn(x) = an+1γn+1Pn+1(x) + bnγnPn(x) + anγn−1Pn−1(x).

Divide by γn+1 to obtain the next statement.

Theorem 2. The monic polynomials Pn(x) satisfy the recurrence

(7) Pn+1(x) = (x− bn)Pn(x)− a2nPn−1(x).

Now consider the sequence of orthonormal polynomials {pn(x)} constructed
for a measure dµt = extdµ. These satisfy a third order recurrence

(8) xpn(x, t) = an+1(t)pn+1(x, t) + bn(t)pn(x, t) + an(t)pn−1(x, t),

where now the coefficients depend on t. The next discussion appears in [3].
Recall that

(9) an(t) =

∫
xpn(x, t)pn−1(x, t)dµt(x) and bn(t) =

∫
xp2n(x, t)dµt(x).

To simplify notation, we will drop the variables in pn(x, t) in (8) and write
it as

(10) xpn = an+1pn+1 + bnpn + anpn−1.

Differentiate with respect to t gives

xp′n = a′n+1pn+1 + b′npn + a′npn−1(11)

+ an+1p
′
n+1 + bnp

′
n + anp

′
n−1,

where ′ is derivative with respect to t. Observe that the degree of p′n (in
x) is at most the degree of pn (the leading coefficients might disappear).
Multiply (11) by pn+1 and integrate to produce∫

xp′npn+1 dµt = a′n+1

∫
p2n+1 dµt + b′n

∫
pnpn+1 dµt(12)

+a′n

∫
pn−1pn+1 dµt + an+1

∫
p′n+1pn+1 dµt

+bn

∫
p′npn+1 dµt + an

∫
p′n−1pn+1 dµt.

Now recall that the polynomials pn are orthonormal, so the integral against
any polynomial of lower degree vanishes. This reduces (12) to

(13)

∫
xp′npn+1 dµt = a′n+1 + an+1

∫
pn+1p

′
n+1 dµt.

Now multiply the relation

(14) xpn+1 = an+2pn+2 + bn+1pn+1 + an+1pn

by p′n and integrate. The non-vanishing terms are

(15)

∫
xp′npn+1 = an+1

∫
pnp
′
n
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and replacing in (14) gives

(16) a′n+1 = an+1

[∫
pnp
′
n −

∫
pn+1p

′
n+1

]
.

To simplify this relation, differentiate the normalization

(17)

∫
p2ndµt =

∫
p2ne

xt dµ = 1,

with respect to t to produce

(18)

∫ (
xp2n + 2pnp

′
n

)
ext dµ = 0,

from which it follows that

(19) bn =

∫
xp2n dµt = −2

∫
pnp
′
n dµt.

Replace this in (16) to obtain

(20) a′n+1 = an+1

[
−1

2bn + 1
2bn+1

]
.

This equation is written as

(21) a′n = 1
2an(bn − bn−1)

after shifting n to n− 1. Multiply by an to produce the alternative form

(22)
d

dt
a2n = a2n (bn − bn−1) .

Now multiply (11) by pn and integrate. The non-vanishing terms give

(23)

∫
xpnp

′
n = b′n + an+1

∫
p′n+1pn + bn

∫
p′npn.

Then multiply (10) by pn and integrate to derive

(24)

∫
xpnp

′
n dµt = bn

∫
pnp
′
n dµt + an

∫
p′npn−1 dµt

from which one obtains

(25) b′n = an

∫
p′npn−1 dµt − an+1

∫
p′n+1pn dµt.

To simplify this identity, differentiate

(26)

∫
pnpn+1e

xt dµ(x) = 0

to obtain

(27)

∫
p′n+1pn +

∫
xpn+1pn = 0.

Therefore (9) gives

(28)

∫
p′n+1pn dµt = −an+1.
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Replacing in (25) gives

(29)
dbn
dt

= a2n+1 − a2n.

Theorem 3. Let {pn} be the sequence of orthonormal polynomials with re-
spect to the measure dµt = extdµ. These polynomials satisfy the recurrence

(30) xpn(x, t) = an+1(t)pn+1(x, t) + bn(t)pn(x, t) + an(t)pn−1(x, t).

The coefficients an(t) and bn(t) satisfy the system of differential equations

d

dt
an = 1

2an(bn − bn−1)(31)

d

dt
bn = a2n+1 − a2n.

The system can be rewritten in the (more standard) equivalent form

d

dt
an = an(bn+1 − bn)(32)

d

dt
bn = 2(a2n − a2n−1).

The paper [2] contains a nice introduction to this important integrable
system.
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