THE DEFINITION OF BERNOULLI NUMBERS

The exponential function

(1)
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

is one of the basic functions. Observe that $e^x - 1$ vanishes at x = 0, so the function

(2)
$$f(x) = \frac{e^x - 1}{x}$$

has a nice expansion at x = 0 given by

(3)
$$f(x) = \frac{e^x - 1}{x} = \sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}$$

The question considered here is the coefficients in the expansion of the $\verb"reciprocal"$ function

(4)
$$g(x) = \frac{x}{e^x - 1} = \sum_{k=0}^{\infty} B_k \frac{x^k}{k!},$$

called the **Bernoulli numbers**.

Multiplying the series for f and its reciprocal will give a recurrence for the Bernoulli numbers:

$$1 = \left(\sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}\right) \times \left(\sum_{j=0}^{\infty} B_j \frac{x^j}{j!}\right)$$
$$= \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{B_j}{j!(k+1)!} x^{j+k}$$
$$= \sum_{r=0}^{\infty} \left(\sum_{j=0}^r \frac{B_j}{j!(r+1-j)!}\right) x^r,$$

and we conclude that $B_0 = 1$ and

(5)
$$\sum_{j=0}^{r} \frac{B_j}{j! (r+1-j)!} = 0, \quad \text{for } r \ge 1.$$

This last relation may be written as

(6)
$$\sum_{j=0}^{r} \binom{r+1}{j} B_j = 0.$$

Solving for the term B_r gives the recurrence

(7)
$$B_r = -\frac{1}{r+1} \sum_{\substack{j=0\\1}}^{r-1} \binom{r+1}{j} B_j.$$

It follows directly from here that B_r is a rational number.

The recurrence (7) gives $B_1 = -\frac{1}{2}$. It turns out that this is the only non-vanishing odd Bernoulli number. This follows directly from the expansion

$$g(x) - 1 + \frac{x}{2} = \frac{x}{e^x - 1} - 1 + \frac{x}{2}$$
$$= x \left(\frac{e^x + 1}{e^x - 1}\right) - 1$$
$$= x \left(\frac{e^{x/2} + e^{-x/2}}{e^{x/2} - e^{-x/2}}\right) - 1.$$

The Bernoulli numbers appear in several series expansion. For instance, observe that

(8)
$$\cot u = \frac{\cos u}{\sin u} \\ = i\frac{e^{iu} + e^{-iu}}{e^{iu} - e^{-iu}} = i\frac{e^{2iu} + 1}{e^{2iu} - 1} = i\left(1 + \frac{2}{e^{2iu} - 1}\right).$$

The relation (8) implies

$$\cot u = i\left(1 + \frac{g(2iu)}{iu}\right) = i\left(1 + \frac{1}{iu}\sum_{n=0}^{\infty}\frac{B_n}{n!}(2iu)^n\right).$$

Since $B_1 = -1/2$ is the only odd Bernoulli number, we obtain

(9)
$$\cot u = i \left(1 + \frac{1}{iu} \left[\sum_{n=0}^{\infty} \frac{B_{2n}}{(2n)!} (2iu)^{2n} - \left(\frac{1}{2}\right) (2iu)^1 \right] \right).$$

This gives

(10)
$$\cot u = \sum_{n=0}^{\infty} \frac{B_{2n}}{(2n)!} (-1)^n 2^{2n} u^{2n-1}.$$

Using the trigonometric identity

(11)
$$\tan u = \cot u - 2\cot(2u)$$

gives the expansion

(12)
$$\tan u = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} B_{2n}}{(2n)!} 2^{2n} \left(2^{2n} - 1\right) u^{2n-1}.$$

The sign of the Bernoulli numbers is easy to discover. A nice of proof of the correct expression for them was given by Mordell [1]. It is based on the identity

(13)
$$\frac{x}{e^x + 1} = \frac{x}{e^x - 1} - \frac{2x}{e^{2x} - 1} = -\sum_{a=1}^{\infty} (2^a - 1) B_a x^a.$$

Multiply this relation by $x/(e^x - 1)$ to obtain the recurrence

(14)
$$B_{2a} = -\sum_{r=0}^{a-1} \frac{2^{2r} - 1}{2^{2a} - 1} \binom{2a}{2r} B_{2r} B_{2a-2r}.$$

Introduce the notation

(15)
$$b_a = (-1)^{a-1} B_{2a}$$

and then (14) becomes

(16)
$$b_a = \sum_{r=1}^{a-1} \frac{2^{2r} - 1}{2^{2a} - 1} \binom{2a}{2r} b_r b_{a-r}.$$

The initial value is $b_1 = B_2 > 0$ and the positivity of b_a is propagated from this last recurrence.

Now we know that b_a is a positive rational number. On a separate note you will find a proof of a result of von Staudt and Clausen that determines a formula for its denominator: the denominator of B_{2n} is the product of all the primes p such that p-1 divides 2n. For example the primes p=2 and p=3 always appear as factors of the denominator. The proof is not so simple. The structure of the numerator of B_{2n} is even more mysterious.

References

[1] L. J. Mordell. The sign of the Bernoulli numbers. Amer. Math. Monthly, 80:547–548, 1973.