THE DEFINITION OF BERNOULLI NUMBERS

The exponential function

$$
\begin{equation*}
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \tag{1}
\end{equation*}
$$

is one of the basic functions. Observe that $e^{x}-1$ vanishes at $x=0$, so the function

$$
\begin{equation*}
f(x)=\frac{e^{x}-1}{x} \tag{2}
\end{equation*}
$$

has a nice expansion at $x=0$ given by

$$
\begin{equation*}
f(x)=\frac{e^{x}-1}{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{(k+1)!} \tag{3}
\end{equation*}
$$

The question considered here is the coefficients in the expansion of the reciprocal function

$$
\begin{equation*}
g(x)=\frac{x}{e^{x}-1}=\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!} \tag{4}
\end{equation*}
$$

called the Bernoulli numbers.
Multiplying the series for f and its reciprocal will give a recurrence for the Bernoulli numbers:

$$
\begin{aligned}
1 & =\left(\sum_{k=0}^{\infty} \frac{x^{k}}{(k+1)!}\right) \times\left(\sum_{j=0}^{\infty} B_{j} \frac{x^{j}}{j!}\right) \\
& =\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{B_{j}}{j!(k+1)!} x^{j+k} \\
& =\sum_{r=0}^{\infty}\left(\sum_{j=0}^{r} \frac{B_{j}}{j!(r+1-j)!}\right) x^{r},
\end{aligned}
$$

and we conclude that $B_{0}=1$ and

$$
\begin{equation*}
\sum_{j=0}^{r} \frac{B_{j}}{j!(r+1-j)!}=0, \quad \text { for } r \geq 1 \tag{5}
\end{equation*}
$$

This last relation may be written as

$$
\begin{equation*}
\sum_{j=0}^{r}\binom{r+1}{j} B_{j}=0 \tag{6}
\end{equation*}
$$

Solving for the term B_{r} gives the recurrence

$$
\begin{equation*}
B_{r}=-\frac{1}{r+1} \sum_{j=0}^{r-1}\binom{r+1}{j} B_{j} \tag{7}
\end{equation*}
$$

It follows directly from here that B_{r} is a rational number.
The recurrence (7) gives $B_{1}=-\frac{1}{2}$. It turns out that this is the only non-vanishing odd Bernoulli number. This follows directly from the expansion

$$
\begin{aligned}
g(x)-1+\frac{x}{2} & =\frac{x}{e^{x}-1}-1+\frac{x}{2} \\
& =x\left(\frac{e^{x}+1}{e^{x}-1}\right)-1 \\
& =x\left(\frac{e^{x / 2}+e^{-x / 2}}{e^{x / 2}-e^{-x / 2}}\right)-1
\end{aligned}
$$

The Bernoulli numbers appear in several series expansion. For instance, observe that

$$
\begin{align*}
\cot u & =\frac{\cos u}{\sin u} \tag{8}\\
& =i \frac{e^{i u}+e^{-i u}}{e^{i u}-e^{-i u}}=i \frac{e^{2 i u}+1}{e^{2 i u}-1}=i\left(1+\frac{2}{e^{2 i u}-1}\right)
\end{align*}
$$

The relation (8) implies

$$
\cot u=i\left(1+\frac{g(2 i u)}{i u}\right)=i\left(1+\frac{1}{i u} \sum_{n=0}^{\infty} \frac{B_{n}}{n!}(2 i u)^{n}\right)
$$

Since $B_{1}=-1 / 2$ is the only odd Bernoulli number, we obtain

$$
\begin{equation*}
\cot u=i\left(1+\frac{1}{i u}\left[\sum_{n=0}^{\infty} \frac{B_{2 n}}{(2 n)!}(2 i u)^{2 n}-\left(\frac{1}{2}\right)(2 i u)^{1}\right]\right) \tag{9}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\cot u=\sum_{n=0}^{\infty} \frac{B_{2 n}}{(2 n)!}(-1)^{n} 2^{2 n} u^{2 n-1} \tag{10}
\end{equation*}
$$

Using the trigonometric identity

$$
\begin{equation*}
\tan u=\cot u-2 \cot (2 u) \tag{11}
\end{equation*}
$$

gives the expansion

$$
\begin{equation*}
\tan u=\sum_{n=0}^{\infty} \frac{(-1)^{n-1} B_{2 n}}{(2 n)!} 2^{2 n}\left(2^{2 n}-1\right) u^{2 n-1} \tag{12}
\end{equation*}
$$

The sign of the Bernoulli numbers is easy to discover. A nice of proof of the correct expression for them was given by Mordell [1]. It is based on the identity

$$
\begin{equation*}
\frac{x}{e^{x}+1}=\frac{x}{e^{x}-1}-\frac{2 x}{e^{2 x}-1}=-\sum_{a=1}^{\infty}\left(2^{a}-1\right) B_{a} x^{a} \tag{13}
\end{equation*}
$$

Multiply this relation by $x /\left(e^{x}-1\right)$ to obtain the recurrence

$$
\begin{equation*}
B_{2 a}=-\sum_{r=0}^{a-1} \frac{2^{2 r}-1}{2^{2 a}-1}\binom{2 a}{2 r} B_{2 r} B_{2 a-2 r} \tag{14}
\end{equation*}
$$

Introduce the notation

$$
\begin{equation*}
b_{a}=(-1)^{a-1} B_{2 a} \tag{15}
\end{equation*}
$$

and then (14) becomes

$$
\begin{equation*}
b_{a}=\sum_{r=1}^{a-1} \frac{2^{2 r}-1}{2^{2 a}-1}\binom{2 a}{2 r} b_{r} b_{a-r} \tag{16}
\end{equation*}
$$

The initial value is $b_{1}=B_{2}>0$ and the positivity of b_{a} is propagated from this last recurrence.

Now we know that b_{a} is a positive rational number. On a separate note you will find a proof of a result of von Staudt and Clausen that determines a formula for its denominator: the denominator of $B_{2 n}$ is the product of all the primes p such that $p-1$ divides $2 n$. For example the primes $p=2$ and $p=3$ always appear as factors of the denominator. The proof is not so simple. The structure of the numerator of $B_{2 n}$ is even more mysterious.

References

[1] L. J. Mordell. The sign of the Bernoulli numbers. Amer. Math. Monthly, 80:547-548, 1973.

