
THE BERNOULLI POLYNOMIALS

The Bernoulli numbers have been defined here by the exponential generating
function
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The question considered here is how to introduce a parameter into these numbers.
One option is to multiply the left-hand side of (1) by a simple function and to
see what happens. Naturally, from the point of view of generating functions, the
simplest possible function is an exponential. Therefore consider the expansion
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where the coefficients on the right-hand side depend on this parameter x.
The rule to multiply the series on the left is
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and applied to (2) gives
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It follows that
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is a polynomial in x, called the Bernoulli polynomial.

An alternative approach to these polynomials is to start with the generating
function (2), without any assumptions on the functions Bk(x) and compute the
first one by

(6) B0(x) = lim
t→0
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and then differentiate (2) with respect to x (after all the exponential function
appears here, so this must be simple) to obtain
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The right-hand side is
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and using B0(x) = 1 it is seen that the sum on the left-hand side starts at k = 1,
leading to
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Now match coefficients of equal powers of t to produce
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This is written as a theorem.

Theorem 1. The functions Bk(x) appearing in the expansion (2) satisfy the re-

currence

(11) B′

k(x) = kBk−1(x), for k ≥ 1.

In particular, the initial condition B0(x) = 1, shows that Bk(x) is a polynomial of

degree k. The expansion (2) gives the special value

(12) Bk(0) = Bk

that can be used as a condition to determine the constant of integration in the

process of determining Bk(x) from Bk−1(x) using (11).

The presence of the exponential factor ext suggests to compute the generating
functions of Bk(x+ 1). This is
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Now compare the coefficients of tk to obtain the relation stated in the next theorem.

Theorem 2. For k ≥ 0, the Bernoulli polynomials satisfy the relation

(14) Bk(x+ 1) = Bk(x) + kxk−1.

Now that we see the expression (14) it seems natural to sum over x, after all
some parts will telescope. To make it consistent with previous notation, change
(14) to

(15) Ba+1(k + 1) = Ba+1(k) + (a+ 1)ka
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(the pair {k, x} was changed to {a+ 1, k}). Then, summing from k = 0 to n gives

(16) Ba+1(n+ 1)−Ba+1(0) = (a+ 1)
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This is the expression that we were looking for at the beginning of the semester.

Many other identities for the Bernoulli polynomials can be established using the
generating function. The next example illustrates this point:

Theorem 3. The Bernoulli polynomials satisfy the identity
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and the result is obtained by matching powers of t.

The identity (5) shows that the value of the Bernoulli polynomial at x = 0 is the
Bernoulli numbers, that is,

(19) Bk(0) = Bk.

Replacing this in (18) gives

(20) Bk +Bk
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This proves the next identity.

Theorem 4. The Bernoulli polynomials satisfy
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With the value of Bk
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we can replace x = 1
2 in (18) to obtain
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Comparing with (21) produces
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For k 6= 1 the common factor does not vanish, this gives Bk(1) = Bk. On the other
hand

(25) Bk(1) = B0x+B1 at x = 1

that produces
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This is summarized as follows

(27) Bk(1) =

{

Bk for k 6= 1

−Bk for k = 1,

that can be written in the simpler form

(28) Bk(1) = (−1)kBk.

This is valid for k = 1 and k even. For k odd k 6= 1, the right-hand side of (28)
vanishes and the same is true for the left-hand side from (27). Therefore (28) holds
for all values of k.

Theorem 5. For k ≥ 0

(29) Bk(1) = (−1)kBk.

It is easy to check that the relation (29) extends to the Bernoulli polynomials.
Indeed, starting with the generating function
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Now compare the coefficients of tk to obtain the next result.

Theorem 6. The Bernoulli polynomials satisfy

(32) Bk(1− x) = (−1)kBk(x), for k ≥ 0.


