THE PARITY OF CATALAN NUMBERS

The question is :
When is the Catalan number an odd number?
Computing the first (say 20) values leads to the conjecture that C_{n} is odd precisely when n has the form $2^{a}-1$.

To prove this, recall the recurrence for the Catalan numbers

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k} .
$$

The discussion now uses the symmetry of this sum in the index k. Observe that the sum has $n+1$ terms.

Case 1. Assume n is odd. Then there are an even number of terms and the sum is written as

$$
C_{n+1}=2 \sum_{k=0}^{\frac{n-1}{2}} C_{k} C_{n-k}
$$

This shows C_{n+1} is an even number. Therefore, if C_{n+1} is an odd number, then n must be even.

Case 2. Assume n is even. Then the sum has an odd number of terms. It can be written as

$$
\begin{aligned}
C_{n+1} & =\sum_{k=0}^{n} C_{k} C_{n-k} \\
& =\sum_{k=0}^{\frac{n}{2}-1} C_{k} C_{n-k}+C_{n / 2}^{2}+\sum_{k=\frac{n}{2}+1}^{n} C_{k} C_{n-k}
\end{aligned}
$$

The change of indices $j=n-k$ shows that the last two sums and we have

$$
C_{n+1}=2 \sum_{k=0}^{\frac{n}{2}-1} C_{k} C_{n-k}+C_{n / 2}^{2}
$$

and since squaring does not change parity, this proves that for n even: C_{n+1} is odd if and only if $C_{n / 2}$ is odd. Write $m=n+1$, to convert the previous statement to:

```
Assume m}\mathrm{ is odd. Then }\mp@subsup{C}{m}{}\mathrm{ is odd if and only if }\mp@subsup{C}{\frac{m-1}{2}}{}\mathrm{ is odd.
```

[^0]Write m odd in binary as

$$
m=1 a_{1} a_{2} \cdots a_{r} 1
$$

Then

$$
\frac{m-1}{2}=1 a_{1} a_{2} \cdots a_{r}
$$

Therefore, if C_{m} is odd, it follows that $a_{r}=1$. Continuing this process shows that all the binary digits of m must be 1 . This is equivalent to the fact that m has the form $2^{a}-1$, as claimed.

[^0]: Date: October 2, 2019.

