FIBONACCI NUMBERS

The original question is this:

How many sequences of 1 and 2 add up to n ?
The problem can be redefined in terms of tilings: we have a rectangle of size $n \times 1$ that we want to cover using squares (tiles of size 1×1) and dominos (tiles of size 2×1).
Check that both problems are really the same.

We introduce the counting function
$a_{n}=$ the number of ways that this can be done.

Looking at the first tile, we divide the count in two disjoint classes: those that start with a square and those that start with a domino. The addition principle shows that

$$
a_{n}=a_{n-1}+a_{n-2}, \quad \text { for } n \geq 3
$$

Now we introduce the generating function of the sequence $\left\{a_{n}\right\}$ by the expression

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Now multiply the recurrence satisfied by the a_{n} by x^{n} and sum for $n=2,3,4, \cdots$ to get

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty} a_{n-1} x^{n}+\sum_{n=2}^{\infty} a_{n-2} x^{n}
$$

Now we simplify these expressions to relate them to the generating function F. First

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=F(x)-a_{0}-a_{1} x
$$

(The two first terms are missing on the left),
then

[^0]\[

$$
\begin{aligned}
\sum_{n=2}^{\infty} a_{n-1} x^{n} & =x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} \\
& =x \sum_{n=1}^{\infty} a_{n} x^{n} \\
& =x\left(F(x)-a_{0}\right) .
\end{aligned}
$$
\]

Think about these two steps, they are very important.
The result of this is an expression for F :

$$
F(x)=\frac{1}{1-x-x^{2}}
$$

Now recall that a_{n} is the coefficient of the expansion of F that multiplies x^{n}. In calculus one has the formula

$$
g(x)=\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} x^{n}
$$

so we can get the a_{n} by differentiating F a number of times $(=n)$ and then putting $x=0$. This is hard. Check it.

The better way is to express F in partial fractions. This is what you do:
solve $1-x-x^{2}=0$ to get two solutions

$$
x_{+}=-\frac{1}{2}(1+\sqrt{5}) \quad \text { and } \quad x_{-}=\frac{1}{2}(-1+\sqrt{5})
$$

so that

$$
1-x-x^{2}=-\left(x-x_{+}\right)\left(x-x_{-}\right)
$$

Then we write

$$
\frac{1}{1-x-x^{2}}=\frac{A}{x-x_{+}}+\frac{B}{x-x_{-}}
$$

for some constants A and B. You have to find these constants (simply add the fractions back) and you get

$$
F(x)=\frac{1}{\sqrt{5}}\left(\frac{1}{x-x_{+}}-\frac{1}{x-x_{-}}\right)
$$

To expand these functions in power series is easy:

$$
\frac{1}{x-x_{+}}=-\frac{1}{x_{+}} \frac{1}{1-x / x_{+}}
$$

and now recall the only thing about series that you need in this course: the geometric series:

$$
\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}
$$

To simplify the answer even further, note that $x_{+} \times x_{-}=-1$, so the formula is

$$
a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]
$$

In particular, when n is very large

$$
a_{n} \sim \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}
$$

The numbers a_{n} are called Fibonacci numbers. They will come back.

[^0]: Date: January 24, 2011.

