A FORMULA FOR FRANEL NUMBERS

The Franel numbers are defined by

$$
\begin{equation*}
\operatorname{Fra}_{n}=\sum_{k=0}^{n}\binom{n}{k}^{3} . \tag{1}
\end{equation*}
$$

The goal of this section is to present a formula for these numbers in terms of the Jacobi polynomial. The notes presented here follow the presentation in [2].

The Jacobi polynomial is defined by

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)=\frac{(\alpha+1)_{n}}{n!} \sum_{k=0}^{n}\binom{n}{k} \frac{(n+\alpha+\beta+1)_{k}}{(\alpha+1)_{k}}\left(\frac{x-1}{2}\right)^{k} \tag{2}
\end{equation*}
$$

Here $(t)_{n}$ is the Pochhammer symbol, defined by

$$
\begin{equation*}
(t)_{j}=t(t+1)(t+2) \cdots(t+j-1) \tag{3}
\end{equation*}
$$

The first step is to produce an expression of the Jacobi polynomial in terms of the hypergeometric function.

Lemma 1. The Jacobi polynomial is given by

$$
P_{n}^{(\alpha, \beta)}(x)=\binom{n+\alpha}{n}{ }_{2} F_{1}\left(\left.\begin{array}{ll}
-n & n+\alpha+\beta+1 \tag{4}\\
\alpha+1
\end{array} \right\rvert\, \frac{1-x}{2}\right) .
$$

Proof. The hypergeometric function is given by

$$
{ }_{2} F_{1}\left(\left.\begin{array}{ll}
-n & \begin{array}{l}
n+\alpha+\beta+1 \\
\alpha+1
\end{array}
\end{array} \right\rvert\, \frac{1-x}{2}\right)=\sum_{k=0}^{\infty} \frac{(-n)_{k}(n+\alpha+\beta+1)_{k}}{(\alpha+1)_{k} k!} \frac{(1-x)^{k}}{2^{k}}
$$

and since $(-n)_{k}=0$ for $k \geq n+1$, the sum is finite
${ }_{2} F_{1}\left(\begin{array}{ll}-n & \left.\begin{array}{l}n+\alpha+\beta+1 \\ \alpha+1\end{array} \right\rvert\, \frac{1-x}{2}\end{array}\right)=\sum_{k=0}^{n}(-1)^{k} \frac{(-n)_{k}(n+\alpha+\beta+1)_{k}}{(\alpha+1)_{k} k!}\left(\frac{x-1}{2}\right)^{k}$,
and the identity is equivalent to

$$
\frac{(\alpha+1)_{n}}{n!}\binom{n}{k} \frac{(n+\alpha+\beta+1)_{k}}{(\alpha+1)_{k}}=\binom{n+\alpha}{n} \frac{(-1)^{k}(-n)_{k}(n+\alpha+\beta+1)_{k}}{(\alpha+1)_{k} k!}
$$

that reduces to

$$
\begin{equation*}
\frac{(\alpha+1)_{n}}{(n-k)!}=(-1)^{k}(-n)_{k}\binom{n+\alpha}{n} \tag{5}
\end{equation*}
$$

[^0]This is established by using the rules

$$
\begin{equation*}
(-n)_{k}=(-1)^{k} \frac{n!}{(n-k)!} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
(x)_{j}=\frac{\Gamma(x+j)}{\Gamma(x)} \quad \text { and } \quad\binom{u}{v}=\frac{\Gamma(u+1)}{\Gamma(v+1) \Gamma(u-v+1)} . \tag{7}
\end{equation*}
$$

The next step is to produce a second form of the Jacobi polynomials. The proof is based on a transformation for the hypergeometric function. This appears as entry 9.131 .1 in the table of integrals [1].

Lemma 2. The hypergeometric function satisfies

$$
{ }_{2} F_{1}\left(\left.\begin{array}{cc}
\alpha & \beta \tag{8}\\
\gamma
\end{array} \right\rvert\, z\right)=(1-z)^{-\alpha}{ }_{2} F_{1}\left(\begin{array}{cc}
\alpha & \gamma-\beta \\
\gamma & \gamma-1
\end{array}\right)
$$

Proof. Start with the integral definition of the hypergeometric function

$$
{ }_{2} F_{1}\left(\begin{array}{cc}
\alpha & \beta \tag{9}\\
\gamma & z
\end{array}\right)=\frac{1}{B(\beta, \gamma-\beta)} \int_{0}^{1} t^{\beta-1}(1-t)^{\gamma-\beta-1}(1-t z)^{-\alpha} d t
$$

valid for $\operatorname{Re} \gamma>\operatorname{Re} \beta>0$ (appearing as entry 9.111. in [1]). Now write

$$
\begin{aligned}
\int_{0}^{1} t^{\beta-1}(1-t)^{\gamma-\beta-1}(1- & \left.t \frac{z}{z-1}\right)^{-\alpha} d t= \\
& (1-z)^{\alpha} \int_{0}^{1} t^{\beta-1}(1-t)^{\gamma-\beta-1}(1-z+t z)^{-\alpha} d t
\end{aligned}
$$

and then make the change of variables $s=1-t$ to obtain the result.
Now use this identity with

$$
\begin{equation*}
z=\frac{1-x}{2}, \alpha \mapsto-n, \beta \mapsto n+\alpha+\beta+1, \gamma \mapsto \alpha+1 \tag{10}
\end{equation*}
$$

to obtain

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c|c}
-n & n+\alpha+\beta+1 \\
\alpha+1
\end{array} \right\rvert\, \frac{1-x}{2}\right)=\left(\frac{1+x}{2}\right)^{n}{ }_{2} F_{1}\left(\begin{array}{cc}
-n-n-\beta & \frac{x-1}{x+1} \\
\alpha+1
\end{array}\right) .
$$

Lemma 1 now gives

$$
P_{n}^{(\alpha, \beta)}(x)=\binom{n+\alpha}{n}\left(\frac{1+x}{2}\right)^{n}{ }_{2} F_{1}\left(\begin{array}{cc}
-n-n-\beta & \frac{x-1}{x+1} \tag{11}\\
\alpha+1
\end{array}\right) .
$$

Writing this in detail produces

$$
\begin{aligned}
P_{n}^{(\alpha, \beta)}(x) & =\binom{n+\alpha}{n}\left(\frac{1+x}{2}\right)^{n}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n-n-\beta \\
\alpha+1
\end{array} \right\rvert\, \frac{x-1}{x+1}\right) \\
& =\binom{n+\alpha}{n}\left(\frac{1+x}{2}\right)^{n} \sum_{k=0}^{n} \frac{(-n)_{k}(-n-\beta)_{k}}{(\alpha+1)_{k} k!} \frac{(x-1)^{k}}{(x+1)^{k}} \\
& =\binom{n+\alpha}{n} \sum_{k=0}^{n} \frac{(-1)^{k}(-n)_{k}(-n-\beta)_{k}}{(\alpha+1)_{k} k!}\left(\frac{1-x}{2}\right)^{k}\left(\frac{1+x}{2}\right)^{n-k} .
\end{aligned}
$$

This is now used to produce a second representation for the Jacobi polynomial.

Lemma 3. The Jacobi polynomial is given by

$$
P_{n}^{(\alpha, \beta)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k}\binom{n+\beta}{k}\left(\frac{x-1}{2}\right)^{k}\left(\frac{1+x}{2}\right)^{n-k} .
$$

Proof. Comparing the desired expression with the last formula before the statement of the Lemma shows that the result is equivalent to prove the identity

$$
\begin{equation*}
\binom{n+\alpha}{n} \frac{(-n)_{k}(-n-\beta)_{k}}{(\alpha+1)_{k} k!}=\binom{n+\alpha}{n-k}\binom{n+\beta}{k} . \tag{12}
\end{equation*}
$$

This follows as before transforming Pochhammer and binomial coefficients in terms of gamma values.

The next statement is the main result in this section. The notation $\left[x^{n}\right] f(x)$ is used for the coefficient of x^{n} in the series expansion of f.

Theorem 4. The identity

$$
\begin{aligned}
{\left[x^{n}\right](1-x)^{n}(1+t x)^{\lambda} P_{n}^{(\alpha, \beta)}\left(\frac{1+x}{1-x}\right) } & =\frac{(\beta+1)_{n}}{n!} \sum_{k=0}^{n}\binom{n}{k}\binom{\lambda}{k}\binom{n+\alpha}{k} \frac{k!t^{k}}{(\beta+1)_{k}} \\
& =\sum_{j=0}^{n}\binom{n+\alpha}{j}\binom{\lambda}{j}\binom{n+\beta}{n-j} t^{j},
\end{aligned}
$$

holds.
Proof. Using the expression for the Jacobi polynomial in Lemma 3 gives

$$
\begin{equation*}
(1-x)^{n}(1+t x)^{\lambda} P_{n}^{(\alpha, \beta)}\left(\frac{1+x}{1-x}\right)=(1+t x)^{\lambda} \sum_{k=0}^{n}\binom{n+\alpha}{n-k}\binom{n+\beta}{k} x^{k} \tag{13}
\end{equation*}
$$

Now

$$
\begin{equation*}
(1+t x)^{\lambda}=\sum_{j=0}^{\lambda}\binom{\lambda}{j} t^{j} x^{j} \tag{14}
\end{equation*}
$$

and we need to find the coefficient of x^{n} in the expansion of the product

$$
\begin{equation*}
\left(\sum_{j=0}^{\lambda}\binom{\lambda}{j} t^{j} x^{j}\right) \times\left(\sum_{k=0}^{n}\binom{n+\alpha}{n-k}\binom{n+\beta}{k} x^{k}\right) . \tag{15}
\end{equation*}
$$

This is given by taking the $j^{\text {th }}$ term on the left factor with the $k^{t h}$ term on the right, subject to $j+k=n$. This produces

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{\lambda}{j}\binom{n+\alpha}{j}\binom{n+\beta}{n-j} t^{j} \tag{16}
\end{equation*}
$$

This is the second claim. To obtain the first form of the identity, simply write the binomial coefficients in terms of Pochhammer.

The special case $\lambda=n, \alpha=\beta=0$ and $t=1$ gives the next result.
Corollary 5. The Franel numbers are given by

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{3}=\left[x^{n}\right]\left(1-x^{2}\right)^{n} P_{n}^{(0,0)}\left(\frac{1+x}{1-x}\right) \tag{17}
\end{equation*}
$$

The polynomial

$$
\begin{equation*}
P_{n}^{(0,0)}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k}^{2}(1-x)^{k}(1+x)^{n-k} \tag{18}
\end{equation*}
$$

is the Legendre polynomial, usually denoted by $P_{n}(x)$.

References

[1] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by D. Zwillinger and V. Moll. Academic Press, New York, 8th edition, 2015.
[2] M. E. H. Ismail. Sums of products of binomial coefficients. Ars Combinatoria, 101:187192, 2011.

[^0]: Date: September 26, 2019.

