THE INTEGRAL OF A RATIONAL FUNCTION

The question considered here is to produce an explicit form of the integral

$$
\begin{equation*}
I_{n}=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n}} \tag{1}
\end{equation*}
$$

Using Mathematica one obtains the data

$$
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\frac{\pi}{2} & \frac{\pi}{4} & \frac{3 \pi}{16} & \frac{5 \pi}{32} & \frac{35 \pi}{256} & \frac{63 \pi}{512} & \frac{231 \pi}{2048} & \frac{429 \pi}{4096} & \frac{6435 \pi}{65536} & \frac{12155 \pi}{131072}
\end{array}
$$

for $1 \leq n \leq 10$. The goal is to produce a recurrence for this integral. But first we illustrate the peeling method.

The peeling method consists of using Mathematica to obtain data for I_{n} and use it to guess a formula for I_{n}.

The first few values of I_{n} contains a factor of π, so it seems a good idea to define

$$
\begin{equation*}
W_{n}=\frac{1}{\pi} I_{n} \tag{2}
\end{equation*}
$$

The first few values of W_{n} are

$$
\begin{array}{llllllllll}
\frac{1}{2} & \frac{1}{4} & \frac{3}{16} & \frac{5}{32} & \frac{35}{256} & \frac{63}{512} & \frac{231}{2048} & \frac{429}{4096} & \frac{6435}{65536} & \frac{12155}{131072}
\end{array}
$$

and now we need to identify these rational numbers.
Some information about the denominators is easy to obtain: the list
$\begin{array}{llllllllll}2 & 4 & 16 & 32 & 256 & 512 & 2048 & 4096 & 65536 & 131072\end{array}$
show that they all are powers of 2 . The corresponding exponents are

$$
\begin{array}{llllllllll}
1 & 2 & 4 & 5 & 8 & 9 & 11 & 12 & 16 & 17
\end{array}
$$

and from here it seems that

$$
\begin{equation*}
R_{n}=2^{2 n-1} \times W_{n} \tag{3}
\end{equation*}
$$

is an integer. The first few values are

$$
\begin{array}{llllllllll}
1 & 2 & 6 & 20 & 70 & 252 & 924 & 3432 & 12870 & 48620
\end{array}
$$

A search in OEIS shows that

$$
\begin{equation*}
R_{n}=\binom{2 n-2}{n-1} \tag{4}
\end{equation*}
$$

A new approach to guessing the formula for I_{n}. A second way to guess the value (4) is explained now: use Mathematica to compute the value R_{50}. The answer is

$$
\begin{equation*}
R_{50}=25477612258980856902730428600 \tag{5}
\end{equation*}
$$

that is a 29 digit number. In its factored form, this number is

$$
\begin{equation*}
R_{50}=97 \cdot 89 \cdot 83 \cdot 79 \cdot 73 \cdots 29 \cdot 19 \cdot 17 \cdot 13 \cdot 5^{2} \cdot 3^{2} \cdot 2^{3} \tag{6}
\end{equation*}
$$

and we will use this form to guess what R_{50} should be. The fact that its factorization contains the primes $97,89,83,79,73$ suggests a relation between R_{50} and 100 !. Therefore we compute

$$
\begin{equation*}
Y_{50}=\frac{R_{50}}{100!} \tag{7}
\end{equation*}
$$

This turns out to be the reciprocal of an integer, so it is better to compute

$$
\begin{equation*}
Z_{50}=\frac{100!}{R_{50}} \tag{8}
\end{equation*}
$$

This is a 129 digits number and its prime factorization is

$$
\begin{equation*}
Z_{50}=47^{2} \cdot 43^{2} \cdot 41^{2} \cdot 37^{2} \cdot 31^{2} \cdots 5^{22} \cdot 3^{46} \cdot 2^{94} \tag{9}
\end{equation*}
$$

that is, all primes in the range 51 to 100 have disappeared. Also the exponents of the primes up to 50 are 2 . This suggests that Z_{50} is related to $50!^{2}$. Therefore we compute

$$
\begin{equation*}
U_{50}=\frac{Z_{50}}{50!^{2}} \tag{10}
\end{equation*}
$$

and Mathematica gives

$$
\begin{equation*}
U_{50}=\frac{99}{25} \tag{11}
\end{equation*}
$$

To guess a formula for U_{n} form the table of values for n from 50 tp 54 to obtain the values

$$
\begin{array}{ccccc}
50 & 51 & 52 & 53 & 54 \\
99 / 25 & 202 / 51 & 103 / 26 & 210 / 53 & 107 / 27
\end{array}
$$

The data suggest to define

$$
\begin{equation*}
V_{n}=n U_{n} \tag{12}
\end{equation*}
$$

that gives

50	51	52	53	54
198	202	206	210	214

that seems to fit the formula

$$
\begin{equation*}
V_{n}=4 n-2 \tag{13}
\end{equation*}
$$

This is equivalent to (4), as before. Repeating this calculation for other values of n, confirms (4).

Guess. The following formula is true:

$$
\begin{equation*}
I_{n}=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n}}=\frac{\pi}{2^{2 n-1}}\binom{2 n-2}{n-1} \tag{14}
\end{equation*}
$$

The form of the guess shows that it is better to introduce J_{n} by

$$
\begin{equation*}
J_{n}=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n+1}} \tag{15}
\end{equation*}
$$

and the guess becomes

$$
\begin{equation*}
J_{n}=\frac{\pi}{2^{2 n+1}}\binom{2 n}{n} . \tag{16}
\end{equation*}
$$

To prove (16) we try to obtain a recurrence: from

$$
\begin{equation*}
J_{n+1}=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n+2}} \tag{17}
\end{equation*}
$$

and write the numerator as

$$
\begin{equation*}
1=\left(x^{2}+1\right)-x^{2} \tag{18}
\end{equation*}
$$

to produce

$$
\begin{align*}
J_{n+1} & =\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n+2}} \tag{19}\\
& =\int_{0}^{\infty} \frac{\left(x^{2}+1\right)-x^{2}}{\left(x^{2}+1\right)^{n+2}} d x \\
& =\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n+1}}-\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{n+2}} \\
& =J_{n}-\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{n+2}} .
\end{align*}
$$

To find a recurrence we need to relate the last integral above in terms of the integral J_{n}. Define

$$
\begin{equation*}
X_{n}=\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{n+2}} \tag{20}
\end{equation*}
$$

so that the previous statement reads

$$
\begin{equation*}
J_{n+1}=J_{n}-X_{n} . \tag{21}
\end{equation*}
$$

Now write

$$
\begin{align*}
X_{n} & =\int_{0}^{\infty} \frac{x}{2} \cdot \frac{2 x}{\left(x^{2}+1\right)^{n+2}} d x \tag{22}\\
& =\int_{0}^{\infty} \frac{x}{2} \cdot \frac{d}{d x}\left[\frac{1}{-(n+1)\left(x^{2}+1\right)^{n+1}}\right] d x
\end{align*}
$$

Integrating by parts and checking that the boundary terms vanish gives

$$
\begin{equation*}
X_{n}=\frac{1}{2(n+1)} \int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n+1}} \tag{23}
\end{equation*}
$$

that is,

$$
\begin{equation*}
X_{n}=\frac{J_{n}}{2(n+1)} \tag{24}
\end{equation*}
$$

Replacing in (21) yields

$$
\begin{equation*}
J_{n+1}=J_{n}-\frac{J_{n}}{2(n+1)}=\frac{2 n+1}{2(n+1)} J_{n} . \tag{25}
\end{equation*}
$$

To prove the identity (16) one could proceed by induction. It becomes easier if we introduce the new unknown Y_{n} by

$$
\begin{equation*}
J_{n}=Y_{n} \times \frac{\pi}{2^{2 n+1}}\binom{2 n}{n} \tag{26}
\end{equation*}
$$

Substituting in (25) produces the recurrence

$$
\begin{equation*}
Y_{n+1}=Y_{n} \tag{27}
\end{equation*}
$$

The initial condition $Y_{0}=1$ then implies $Y_{n} \equiv 1$ for all $n \in \mathbb{N}$. Formula (16) has been established.

Theorem 1. Let $n \in \mathbb{N}$. Then

$$
\begin{equation*}
J_{n}=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n+1}} \tag{28}
\end{equation*}
$$

is given by

$$
\begin{equation*}
J_{n}=\frac{\pi}{2^{2 n+1}}\binom{2 n}{n} \tag{29}
\end{equation*}
$$

