
LARRY GLASSER’S THEOREM FOR BEUKERS INTEGRALS

In [1], the author established the identity

(1)

∫ 1

0

∫ 1

0

f(xy) dx dy = −
∫ 1

0

ln s f(s) ds.

Taking f(s) = 1/(1− s), this produces the simplest Beukers’ integral

(2)

∫ 1

0

∫ 1

0

dx dy

1− xy
= ζ(2).

To prove the formula, observe that by symmetry

(3) I =

∫ 1

0

∫ 1

0

f(xy) dx dy = 2

∫ ∫
R

f(xy) dx dy

where R is the interior of the triangle with vertices (0, 0), (1, 0), (1, 1). Make the
change of variables

(4) u = xy, t = x− y

with jacobian

(5) J =

∣∣∣∣det(y x
1 −1

)∣∣∣∣ = x+ y =
1√

t2 + 4u
.

The regionR is mapped onto the interior of the triangle with vertices (0, 0), (1, 0), (0, 1).
Therefore

(6) I = 2

∫ 1

0

∫ 1−u

0

f(u)√
t2 + 4

dt du.

The change of variables t = 2
√
uy gives∫ 1−u

0

f(u)√
t2 + 4

dt =

∫ (1−u)/2
√
u

0

dy√
y2 + 1

= sinh−1
(
1− u
2
√
u

)
.

This implies

(7) I = 2

∫ 1

0

f(u) sinh−1
(
1− u
2
√
u

)
du.

In order to transform this integral, we would like to introduce a new variable x such
that

(8)
1− u
2
√
u

= sinhx.
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Squaring this gives a quadratic equation for u with solutions

u = 1± 2 sinhx coshx+ 2 sinh2 x

= 1± e2x − e−2x

2
+
e2x − 2 + e−2x

2

=
1

2

(
±(e2x − e−2x) + (e2x + e−2x)

)
.

Choosing the minus sign gives u = e−2x with x moving from 0 to +∞ (the choice
of plus sign gives the same result). This implies

(9) I = 4

∫ ∞
0

xe−2xf(e−2x) dx.

The change of variables s = e−2x gives

(10)

∫ 1

0

∫ 1

0

f(xy) dx dy = −
∫ 1

0

ln s f(s) ds,

as claimed.
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