LARRY GLASSER'S THEOREM FOR BEUKERS INTEGRALS

In [1], the author established the identity

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} f(x y) d x d y=-\int_{0}^{1} \ln s f(s) d s \tag{1}
\end{equation*}
$$

Taking $f(s)=1 /(1-s)$, this produces the simplest Beukers' integral

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x y}=\zeta(2) \tag{2}
\end{equation*}
$$

To prove the formula, observe that by symmetry

$$
\begin{equation*}
I=\int_{0}^{1} \int_{0}^{1} f(x y) d x d y=2 \iint_{R} f(x y) d x d y \tag{3}
\end{equation*}
$$

where R is the interior of the triangle with vertices $(0,0),(1,0),(1,1)$. Make the change of variables

$$
\begin{equation*}
u=x y, \quad t=x-y \tag{4}
\end{equation*}
$$

with jacobian

$$
J=\left|\operatorname{det}\left(\begin{array}{cc}
y & x \tag{5}\\
1 & -1
\end{array}\right)\right|=x+y=\frac{1}{\sqrt{t^{2}+4 u}}
$$

The region R is mapped onto the interior of the triangle with vertices $(0,0),(1,0),(0,1)$. Therefore

$$
\begin{equation*}
I=2 \int_{0}^{1} \int_{0}^{1-u} \frac{f(u)}{\sqrt{t^{2}+4}} d t d u \tag{6}
\end{equation*}
$$

The change of variables $t=2 \sqrt{u} y$ gives

$$
\begin{aligned}
\int_{0}^{1-u} \frac{f(u)}{\sqrt{t^{2}+4}} d t & =\int_{0}^{(1-u) / 2 \sqrt{u}} \frac{d y}{\sqrt{y^{2}+1}} \\
& =\sinh ^{-1}\left(\frac{1-u}{2 \sqrt{u}}\right)
\end{aligned}
$$

This implies

$$
\begin{equation*}
I=2 \int_{0}^{1} f(u) \sinh ^{-1}\left(\frac{1-u}{2 \sqrt{u}}\right) d u \tag{7}
\end{equation*}
$$

In order to transform this integral, we would like to introduce a new variable x such that

$$
\begin{equation*}
\frac{1-u}{2 \sqrt{u}}=\sinh x \tag{8}
\end{equation*}
$$

Squaring this gives a quadratic equation for u with solutions

$$
\begin{aligned}
u & =1 \pm 2 \sinh x \cosh x+2 \sinh ^{2} x \\
& =1 \pm \frac{e^{2 x}-e^{-2 x}}{2}+\frac{e^{2 x}-2+e^{-2 x}}{2} \\
& =\frac{1}{2}\left(\pm\left(e^{2 x}-e^{-2 x}\right)+\left(e^{2 x}+e^{-2 x}\right)\right)
\end{aligned}
$$

Choosing the minus sign gives $u=e^{-2 x}$ with x moving from 0 to $+\infty$ (the choice of plus sign gives the same result). This implies

$$
\begin{equation*}
I=4 \int_{0}^{\infty} x e^{-2 x} f\left(e^{-2 x}\right) d x \tag{9}
\end{equation*}
$$

The change of variables $s=e^{-2 x}$ gives

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} f(x y) d x d y=-\int_{0}^{1} \ln s f(s) d s \tag{10}
\end{equation*}
$$

as claimed.

References

[1] M. L. Glasser. A note on Beukers' and related double integrals. Amer. Math. Monthly, 126:361363, 2019.

