THE EXPANSION OF THE DISCRIMINANT

VICTOR H. MOLL

In class we have talked about *modular forms* of weight k. These are functions $f : \mathbb{H} \to \mathbb{C}$ that are holomorphic in \mathbb{H} and also at $i\infty$ (this means that f has an expansion $f(q) = \sum_{n=0}^{\infty} a_n q^n$, where $q(z) = e^{2\pi i z}$. The modularity condition required for f is that

(1)
$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

for every $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1. This is the same as requiring $f(\gamma z) = (cz + d)^k f(z)$ for every $\gamma \in \Gamma$. For now we will require k to be a non-negative even integer. The class of modular functions of weight k is denoted by \mathfrak{M}_k .

The *Eisenstein series* defined by

(2)
$$E_{2k}(z) = \frac{1}{2\zeta(2k)} \sum \frac{1}{(mz+n)^{2k}}$$

where the sum extends over all integers m, n except the pair (0, 0). The series converges to a holomorphic function on \mathbb{H} (your homework) and has the expansion

(3)
$$E_{2k}(z) = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n$$

The values of the first Bernoulli numbers are

$ \begin{vmatrix} 4 & 6 & 8 & 10 \\ -\frac{1}{30} & \frac{1}{42} & \frac{-1}{30} & \frac{5}{66} & -\frac{691}{2730} & \frac{7}{6} \end{vmatrix} $	$\begin{array}{c ccccc} 4 & 16 & 18 & 20 \\ -\frac{3617}{510} & \frac{43867}{798} & -\frac{174611}{330} \end{array}$
---	--

It was shown in class that the space $\mathfrak{M}_0 = \mathbb{C}$, that $\mathfrak{M}_2 = \{0\}$ and that, for k = 4, 6, 8, 10, 14, the vector space \mathfrak{M}_k is of dimension 1 and is generated by E_k . Observe that E_4^3 and E_6^2 are both in \mathfrak{M}_{12} and both have the value 1 at $i\infty$. Therefore

(4)
$$\Delta(z) = C \left(E_4^3(z) - E_6^2(z) \right)$$

is in \mathfrak{M}_{12} for any $C \in \mathbb{C}$. Also, Δ and E_{12} are linearly independent, since $\Delta(i\infty) = 0$ and $E_{12}(i\infty) = 1$.

Now we look at the expansions at $i\infty$. Start with

(5)
$$E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n)q^n \text{ and } E_6(z) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n)q^n.$$

Date: September 23, 2019.

Therefore, the expansion of Δ at $i\infty$ is

(6)
$$\frac{\Delta(z)}{C} = \left(1 + 240\sum_{n=1}^{\infty}\sigma_3(n)q^n\right)^3 - \left(1 - 504\sum_{n=1}^{\infty}\sigma_5(n)q^n\right)^2.$$

Introduce the notation $u = \sum_{n=1}^{\infty} \sigma_3(n)q^n$ and $v = \sum_{n=1}^{\infty} \sigma_5(n)q^n$. Then $\frac{\Delta(z)}{C} = \left[(1+240u)^3 - (1-504v)^2 \right]$. and expanding gives (7) $\frac{\Delta(z)}{C} = 144 \left(5u - 1200u^2 + 96000u^3 + 7v + 1764v^2 \right)$.

The coefficient of q in the expansion of $\Delta(z)/C$ comes from the term 5u + 7v, since the remaining terms start with q^2 . In the series for 5u + 7v, this coefficient is $5\sigma_3(1) + 7\sigma_5(1) = 12$. The constant C is chosen to normalize the expansion of Δ to start with $1 \cdot q$. This is done by choosing C = 1/1728.

Definition. The function Δ is defined by $\Delta(z) = \frac{1}{1728} \left(E_4^3(z) - E_6^2(z) \right)$. This is called the **discriminant** (for reasons that will become clear soon). The coefficients in the expansion

(8)
$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n)q^n,$$

are called the Ramanujan coefficients.

The equation (7) is now written as

(9)
$$\Delta(z) = \frac{1}{12} \left(5u - 1200u^2 + 96000u^3 + 7v + 1764v^2 \right)$$

(10)
$$= \frac{1}{12}(5u+7v) - 100u^2 + 8000u^3 + 147v^2.$$

Theorem. The coefficients $\tau(n)$ are integers.

Proof. The series u^2 , u^3 and v^2 have integer coefficients. Therefore, the result follows from the fact that 5u + 7v has coefficients that are multiples of 12. The result now follows from the congruence

(11)
$$5\sigma_3(n) + 7\sigma_5(n) \equiv 0 \mod 12.$$

This can be written as $5\sigma_3(n) \equiv 5\sigma_5(n) \mod 12$. Cancelling the 5, the result now follows from the congruence $\sigma_3(n) \equiv \sigma_5(n) \mod 12$. This is left to you as an exercise. It comes down to prove that $d^3(d-1)(d+1)$ is a multiple of 12.

The Ramanujan coefficients satisfy many identities that will be discussed in class. You will see soon that $\tau(n)$ is a multiplicative function and satisfies the estimate $|\tau(p)| \leq 2p^6$, for p prime. The improvement $|\tau(p)| \leq 2p^{11/2}$, was proved by P. Deligne in 1974 as a corollary of his proof of the so-called *Weil conjectures*. This is quite hard.

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LA 70118 Email address: vhm@math.tulane.edu