THE EXPANSION OF THE DISCRIMINANT

VICTOR H. MOLL

In class we have talked about modular forms of weight k. These are functions $f: \mathbb{H} \rightarrow \mathbb{C}$ that are holomorphic in \mathbb{H} and also at $i \infty$ (this means that f has an expansion $f(q)=\sum_{n=0}^{\infty} a_{n} q^{n}$, where $q(z)=e^{2 \pi i z}$. The modularity condition required for f is that

$$
\begin{equation*}
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z) \tag{1}
\end{equation*}
$$

for every $a, b, c, d \in \mathbb{Z}$ with $a d-b c=1$. This is the same as requiring $f(\gamma z)=$ $(c z+d)^{k} f(z) \quad$ for every $\gamma \in \Gamma$. For now we will require k to be a non-negative even integer. The class of modular functions of weight k is denoted by \mathfrak{M}_{k}.

The Eisenstein series defined by

$$
\begin{equation*}
E_{2 k}(z)=\frac{1}{2 \zeta(2 k)} \sum \frac{1}{(m z+n)^{2 k}} \tag{2}
\end{equation*}
$$

where the sum extends over all integers m, n except the pair $(0,0)$. The series converges to a holomorphic function on \mathbb{H} (your homework) and has the expansion

$$
\begin{equation*}
E_{2 k}(z)=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} \tag{3}
\end{equation*}
$$

The values of the first Bernoulli numbers are

4	6	8	10	12	14	16	18	20
$-\frac{1}{30}$	$\frac{1}{42}$	$\frac{-1}{30}$	$\frac{5}{66}$	$-\frac{691}{2730}$	$\frac{7}{6}$	$-\frac{3617}{510}$	$\frac{43867}{798}$	$-\frac{174611}{330}$

It was shown in class that the space $\mathfrak{M}_{0}=\mathbb{C}$, that $\mathfrak{M}_{2}=\{0\}$ and that, for $k=4,6,8,10,14$, the vector space \mathfrak{M}_{k} is of dimension 1 and is generated by E_{k}. Observe that E_{4}^{3} and E_{6}^{2} are both in \mathfrak{M}_{12} and both have the value 1 at $i \infty$. Therefore

$$
\begin{equation*}
\Delta(z)=C\left(E_{4}^{3}(z)-E_{6}^{2}(z)\right) \tag{4}
\end{equation*}
$$

is in \mathfrak{M}_{12} for any $C \in \mathbb{C}$. Also, Δ and E_{12} are linearly independent, since $\Delta(i \infty)=0$ and $E_{12}(i \infty)=1$.

Now we look at the expansions at $i \infty$. Start with

$$
\begin{equation*}
E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} \text { and } E_{6}(z)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n} \tag{5}
\end{equation*}
$$

[^0]Therefore, the expansion of Δ at $i \infty$ is

$$
\begin{equation*}
\frac{\Delta(z)}{C}=\left(1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}\right)^{3}-\left(1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}\right)^{2} \tag{6}
\end{equation*}
$$

Introduce the notation $u=\sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}$ and $v=\sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}$. Then $\frac{\Delta(z)}{C}=\left[(1+240 u)^{3}-(1-504 v)^{2}\right]$. and expanding gives

$$
\begin{equation*}
\frac{\Delta(z)}{C}=144\left(5 u-1200 u^{2}+96000 u^{3}+7 v+1764 v^{2}\right) \tag{7}
\end{equation*}
$$

The coefficient of q in the expansion of $\Delta(z) / C$ comes from the term $5 u+7 v$, since the remaining terms start with q^{2}. In the series for $5 u+7 v$, this coefficient is $5 \sigma_{3}(1)+7 \sigma_{5}(1)=12$. The constant C is chosen to normalize the expansion of Δ to start with $1 \cdot q$. This is done by choosing $C=1 / 1728$.
Definition. The function Δ is defined by $\Delta(z)=\frac{1}{1728}\left(E_{4}^{3}(z)-E_{6}^{2}(z)\right)$. This is called the discriminant (for reasons that will become clear soon). The coefficients in the expansion

$$
\begin{equation*}
\Delta(z)=\sum_{n=1}^{\infty} \tau(n) q^{n} \tag{8}
\end{equation*}
$$

are called the Ramanujan coefficients.
The equation (7) is now written as

$$
\begin{align*}
\Delta(z) & =\frac{1}{12}\left(5 u-1200 u^{2}+96000 u^{3}+7 v+1764 v^{2}\right) \tag{9}\\
& =\frac{1}{12}(5 u+7 v)-100 u^{2}+8000 u^{3}+147 v^{2} \tag{10}
\end{align*}
$$

Theorem. The coefficients $\tau(n)$ are integers.
Proof. The series u^{2}, u^{3} and v^{2} have integer coefficients. Therefore, the result follows from the fact that $5 u+7 v$ has coefficients that are multiples of 12 . The result now follows from the congruence

$$
\begin{equation*}
5 \sigma_{3}(n)+7 \sigma_{5}(n) \equiv 0 \bmod 12 \tag{11}
\end{equation*}
$$

This can be written as $5 \sigma_{3}(n) \equiv 5 \sigma_{5}(n) \bmod 12$. Cancelling the 5 , the result now follows from the congruence $\sigma_{3}(n) \equiv \sigma_{5}(n) \bmod 12$. This is left to you as an exercise. It comes down to prove that $d^{3}(d-1)(d+1)$ is a multiple of 12 .

The Ramanujan coefficients satisfy many identities that will be discussed in class. You will see soon that $\tau(n)$ is a multiplicative function and satisfies the estimate $|\tau(p)| \leq 2 p^{6}$, for p prime. The improvement $|\tau(p)| \leq 2 p^{11 / 2}$, was proved by P. Deligne in 1974 as a corollary of his proof of the so-called Weil conjectures. This is quite hard.

[^0]: Date: September 23, 2019.

