
MATH 320: COMBINATORICS.

COUNTING PATHS
VICTOR H. MOLL

The goal of these notes is to describe the counting of paths explained in
class. In these problems one usually has a starting point and an ending
point and some description of what the path is suppose to do.

Example 1. Suppose we want to count all the paths going from (0, 0 to
(a, b), with a, b ∈ N. The possible steps are (i, j) 7→ (i + 1, j) (moving one
unit to the right) and (i, j) 7→ (i, j+1) (moving one unit up). Then, in order
to get to (a, b), you must take a + b steps. Of these a must be horizontal
and b vertical. Now mark the steps as s1, s2, · · · , sa+b. You must choose a
of them, which must be horizontal. Once you do that, the rest is completely
decided. Therefore, the number of such paths is(

a + b

a

)
.

Example 2. This is more complicated. In this case we take paths with steps
(i, j) 7→ (i + 1, j + 1) (this is diagonally up, it will be called NE). The other
steps are (i, j) 7→ (i+ 1, j− 1), called SE. The goal is to count all the paths
from (0, 0) to (n, 0); that is, the path will start and end on the x-axis. In
order to make the problem more interesting, we will also require that the
path must stay above the x-axis.

The first observation is that the numbers of NE steps must be the same
as the number of SE steps, since the ups and down must be same. Therefore
the total number of steps must be even. At this point we need to introduce
a variable: let

Cn = the number of legal paths starting at (0, 0) and ending at (n, 0).

A legal path is one composed by the two type of steps above and staying
above the x-axis, with the appropriate initial and ending points. Therefore
Cn = if n is odd.

In order to get an expression for Cn we will divide them into disjoint
classes. This is not easy. It turns out that it is convenient to define the
set

(1) Ok = legal paths with first hit of the x axis at position k.

The possible choices of k are 2, 4, · · · , n− 2, n. It should be clear that each
legal path is precisely in one of the classes Ok. The addition principle states
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that

(2) Cn =

n∑
k=2

|Ok| ,

where |X| denotes the number of elements in the set X.
The question is now to determine how many elements are in the set Ok.

Any such path starts at (0, 0), stays above the x-axis until it reaches (k, 0)
(this is the first time it hits this axis) and then is followed by an arbitrary
legal path starting at (k, 0) and ending at (2n, 0). The total number of these
type of paths is now obtained by multiplying the number of choices for the
first part with the number of choices of the second type. The count of the
second type is easy: move any such legal path k units to the left. Then
you get a legal path starting at (0, 0) and ending at (n− k, 0). (Recall that
both n and k are even. Therefore the total number of the second type is
simply Cn−k. The first type of paths are not all the legal ones. Here we
have restricted the positions, except the first and last, to be above the axis.
Now comes a good idea: ignore the first and last step and treat the level
one above the x-axis as the new horizontal axis. Then you get all possible
legal paths of length k − 2. Therefore the number of paths of the first
kind is Ck−2. In order to convince yourself of this, do the case n = 10. This
gives the recurrence

(3) Cn =
n∑

k=2

Ck−2Cn−k.

For example, when n = 2, we must get C2 = 1. Replacing in (3) gives

(4) C2 = C2
0 .

Therefore C0 = 1 is imposed by the recurrence. Think that is also consistent
with the definition. It is a little strange. There is one such path: start at
(0, 0) and do not move.

Since n and k are even, write n = 2m and k = 2j. Then (3) becomes

(5) C2m =

m∑
j=1

C2j−2C2m−2j

and now only even indices are involved. Actually (3), with C1 = 0, will
show you that Codd = 0, as you expect.

One can use the recurrence to produce the values

(6) C2 = 1, C4 = 2, C6 = 5, C8 = 14, C10 = 42,

and the OEIS site gives the Catalan numbers as the first hit. There are
many other sites, but if you use the recurrence to generate enough values,
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you will see that the only possible choice is

(7) C2n =
1

n + 1

(
2n

n

)
.

The rest of the notes proves this. One needs to have an idea: a common
one is to introduce the generating function

(8) f(x) =
∞∑
n=0

Cnx
n.

Note that we have included also the values Cn with n odd. In other problems
one does not have extra information on the coefficients.

The form of (3) suggests to compute the square of f(x). This might not
be clear at first, but experience helps.

Suppose you have two series

(9) A(x) =
∞∑
k=0

akx
k and B(x) =

∞∑
j=0

bkx
j

and then you multiply them

A(x)B(x) =

( ∞∑
k=0

akx
k

)
×

 ∞∑
j=0

bjx
j


=

∞∑
k=0

∞∑
j=0

akbjx
j+k.

Think about all the points (k, j) that you need to sum over. They form a
lattice of points on the unit quadrant with integer coefficients. The point
is that, since we see the expression j + k, it might be convenient to use this
as a new variable. Let

(10) r = j + k

and then observe that r runs from 0 to ∞. When r has a fixed value, say
r = 10, then you are covering a line with slope −1. The possible choices of
k are 0, 1, · · · , r and then j is determined as j = r − k. Therefore

(11)

∞∑
k=0

∞∑
j=0

akbjx
j+k =

∞∑
r=0

(
r∑

k=0

akbr−k

)
xr.

This shows that the coefficient of A(x)B(x) of xr is

(12)
r∑

k=0

akbr−k.

This is called the convolution of the sequences {ak} and {bj}. Observe the
similarity with the convolution for continuous functions

(13) (u ∗ v)(x) =

∫ x

0
u(y)v(x− y) dy.
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The calculation above shows that the square of the generating function
f(x) is given by

(14) f2(x) =
∞∑
r=0

(
r∑

k=0

CkCr−k

)
xr.

This looks very much like (3). To put in the right form, we need to start
the sum at k = 2. This is easy to fix:

(15)

r∑
k=0

CkCr−k =

r+2∑
k=2

Ck−2Cr+2−k

And now you can use (3) to write the right-hand side of (15) as Cr+2. Think
about this. Then

(16) f2(x) =
∞∑
r=0

Cr+2x
2.

Now we need to write the right-hand side of (16) in terms of f . Observe
that

f2(x) =

∞∑
r=0

Cr+2x
r

= x−2
∞∑
r=0

Cr+2x
r+2

= x−2
∞∑

m=2

Cmxm.

In this last sum is f except that the first two terms are missing. Using
C0 = 1 and C1 = 1 it gives

(17) f2(x) = x−2 (f(x)− 1) .

This simplifies to

(18) x2f2(x)− f(x) + 1 = 0.

This is a quadratic equation that gives two choices (from the ±):

(19) f(x) =
1±
√

1− 4x2

2x2
.

Since f(0) = C0 = 1, the correct sign must be the negative one

(20) f(x) =
1−
√

1− 4x2

2x2
.

Now remember that

(21) f(x) =

∞∑
n=0

Cnx
n,
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and since (20) has only even powers of x, you see again that Codd = 0. It is
nive when things work out to something you know.

To obtain a formula for Cn, we need a formula for
√

1− 4x2. We start
with

√
1 + t, expand and then replace t by −4x2. Let’s see what comes

out of this.
Start with the binomial theorem

(22) (1 + t)a =

a∑
j=0

(
a

j

)
tj

and then put a = 1/2. The upper limit of the sum you can replace by
∞, since in the case when a is a positive integer, the added terms (with
binomials) are zero. Then, first when a ∈ N,

(23)

(
a

j

)
=

a!

j! (a− j)!
=

a(a− 1)(a− 2) · · · (a− j + 1)

j!

and note that there are j factors on top and bottom of the last fraction.
Then, when a = 1

2 ,

1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·
(
1
2 − j + 1

)
= (−1)j−1 12 ·

1
2 ·

3
2 · · ·

2j−3
2(24)

The denominator is 2j , since there are j factors. The numerator is the
product of the odd numbers from 1 to 2j − 3. In order to write it as
factorials, here is a nice trick:

1 · 3 · · · (2j − 3) =
1 · 2 · 3 · 4 · · · (2j − 4) · (2j − 3)

2 · 4 · 6 · · · (2j − 4)
(25)

=
1 · 2 · 3 · 4 · · · (2j − 4) · (2j − 3)

(2 · 1) · (2 · 2) · (2 · 3) · · · (2 · (j − 2))

=
(2j − 3)!

2j−2(j − 2)!

This gives, after a small adjustment,

(26)

(1
2

j

)
=

(−1)j−1(2j − 2)!

22j−1j! (j − 1)!

for j ≥ 1. Then

(27) (1 + t)1/2 = 1 +
∞∑
j=1

(−1)j−1(2j − 2)!

22j−1j! (j − 1)!
tj .

Now replace t by −4x2 to get

(28) (1− 4x2)1/2 = 1− 2
∞∑
j=1

(2j − 2)!

j! (j − 1)!
x2j .
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Now use (20) to get

f(x) =
1−
√

1− 4x2

2x2
(29)

=
∞∑
j=1

(2j − 2)!

j!(j − 1)!
x2j−2

=
∞∑
j=0

(2j)!

(j + 1)! j!
x2j

=
∞∑
j=0

1

j + 1

(
2j

j

)
x2j .

This proves Codd = 0 and

(30) C2j =
1

j + 1

(
2j

j

)
.

FINALLY, this proves (7).

The numbers C2n are called Catalan numbers. They will come back.


