RAABE'S THEOREM FOR BERNOULLI POLYNOMIALS

The Bernoulli polynomials have the generating function

$$
\begin{equation*}
\frac{t e^{x t}}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!} \tag{1}
\end{equation*}
$$

The identity

$$
\begin{equation*}
B_{k}(x)+B_{k}\left(x+\frac{1}{2}\right)=2^{1-k} B_{k}(2 x), \quad \text { for } k \geq 0 \tag{2}
\end{equation*}
$$

was established in a previous note.
The generalization presented below is due to Raabe:
Theorem 1. The Bernoulli polynomials satisfy the identity

$$
\begin{equation*}
B_{n}(r x)=r^{n-1} \sum_{k=0}^{r-1} B_{n}\left(x+\frac{k}{r}\right), \quad \text { for } r \geq 1 \text { and } n \geq 0 \tag{3}
\end{equation*}
$$

Compute the generating function of the right-hand side as

$$
\begin{align*}
\sum_{n=0}^{\infty} \sum_{k=0}^{r-1} B_{n}\left(x+\frac{k}{r}\right) \frac{t^{n}}{n!} & =\sum_{k=0}^{r-1} \frac{t}{e^{t}-1} e^{(x+k / r) t} \tag{4}\\
& =\frac{t e^{x t}}{e^{t}-1} \sum_{k=0}^{r-1} e^{k t / r} \\
& =\frac{t e^{x t}}{e^{t}-1} \times \frac{e^{t}-1}{e^{t / r}-1} \\
& =\frac{t e^{x t}}{e^{t / r}-1} \\
& =r \frac{s e^{r x s}}{e^{s}-1}
\end{align*}
$$

with $s=t / r$. The last expression can be written as

$$
\begin{equation*}
r \frac{s e^{r x s}}{e^{s}-1}=\sum_{n=0}^{\infty} B_{n}(r x) \frac{s^{n}}{n!} \tag{5}
\end{equation*}
$$

and comparing coefficients of t^{n} gives

$$
\begin{equation*}
\frac{1}{n!} \sum_{k=0}^{r-1} B_{n}\left(x+\frac{k}{r}\right)=\frac{r^{1-n}}{n!} B_{n}(r x) \tag{6}
\end{equation*}
$$

This gives the result.
In the case $r=3$ the identity gives

$$
\begin{equation*}
3^{1-n} B_{n}(3 x)=B_{n}(x)+B_{n}\left(x+\frac{1}{3}\right)+B_{n}\left(x+\frac{2}{3}\right) \tag{7}
\end{equation*}
$$

and letting $x=0$ gives

$$
\begin{equation*}
\left(3^{1-n}-1\right) B_{n}=B_{n}\left(\frac{1}{3}\right)+B_{n}\left(\frac{2}{3}\right) . \tag{8}
\end{equation*}
$$

The relation $B_{n}(1-x)=(-1)^{n} B_{n}(x)$ gives

$$
\begin{equation*}
B_{n}\left(\frac{2}{3}\right)=(-1)^{n} B_{n}\left(\frac{1}{3}\right) \tag{9}
\end{equation*}
$$

and the using this on the right-hand side of (8) produces

$$
\begin{equation*}
\left(3^{1-n}-1\right) B_{n}=\left(1+(-1)^{n}\right) B_{n}\left(\frac{1}{3}\right) . \tag{10}
\end{equation*}
$$

This says nothing for n odd, but for n even it gives

$$
\begin{equation*}
B_{n}\left(\frac{1}{3}\right)=\frac{1}{2}\left(3^{1-n}-1\right) B_{n} \tag{11}
\end{equation*}
$$

and, from (9),

$$
\begin{equation*}
B_{n}\left(\frac{2}{3}\right)=\frac{1}{2}\left(3^{1-n}-1\right) B_{n} \tag{12}
\end{equation*}
$$

Theorem 2. The Bernoulli polynomials satisfy

$$
\begin{equation*}
B_{2 n}\left(\frac{1}{3}\right)=B_{2 n}\left(\frac{2}{3}\right)=\frac{1}{2}\left(3^{1-2 n}-1\right) B_{2 n} \tag{13}
\end{equation*}
$$

Question:What about the case n odd?
Now take $r=4$ in Raabe's theorem to obtain

$$
\begin{equation*}
4^{1-n} B_{n}(4 x)=B_{n}(x)+B_{n}\left(x+\frac{1}{4}\right)+B_{n}\left(x+\frac{1}{2}\right)+B_{n}\left(x+\frac{3}{4}\right) . \tag{14}
\end{equation*}
$$

The special case $x=0$ gives

$$
\begin{equation*}
\left(4^{1-n}-1\right) B_{n}=B_{n}\left(\frac{1}{4}\right)+B_{n}\left(\frac{1}{2}\right)+B_{n}\left(\frac{3}{4}\right) \tag{15}
\end{equation*}
$$

The use

$$
\begin{equation*}
B_{n}\left(\frac{1}{2}\right)=\left(2^{1-n}-1\right) B_{n} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}\left(\frac{3}{4}\right)=(-1)^{n} B_{n}\left(\frac{1}{4}\right) \tag{17}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\left(2^{2-2 n}-2^{1-n}\right) B_{n}=\left[1+(-1)^{n}\right] B_{n}\left(\frac{1}{4}\right) \tag{18}
\end{equation*}
$$

The case n odd gives no information and the case n gives

$$
\begin{equation*}
B_{2 n}\left(\frac{1}{4}\right)=\left(2^{1-4 n}-2^{-2 n}\right) B_{2 n} \tag{19}
\end{equation*}
$$

Theorem 3. The Bernoulli polynomials satisfy

$$
\begin{equation*}
B_{2 n}\left(\frac{1}{4}\right)=B_{2 n}\left(\frac{3}{4}\right)=-\frac{2^{2 n-1}-1}{2^{4 n-1}} B_{2 n} \tag{20}
\end{equation*}
$$

