ORTHOGONAL POLYNOMIALS AND THE TODA EQUATIONS

The type of results that appeal to me and I try to include them in my classes is unexpected relations among subjects that apriori seem unrelated. This connections might be clear to the expert, but the students seem to enjoy them. Here is one of them:

Start with a sequence of polynomials $\left\{p_{n}\right\}$ with $\operatorname{deg} p_{n}=n$. Then, for any fixed $k \in \mathbb{N}$, the set $\left\{p_{0}, p_{1}, \cdots, p_{k}\right\}$ is a basis for the vector space \mathbb{V}_{k} of polynomials of degree at most k. It is often convenient to assume that this basis is orthonormal with respect to an inner product defined on \mathbb{V}_{k}. This can be given in terms of a positive measure by the rule

$$
\langle f, g\rangle=\int_{I} f(x) g(x) d \mu(x)
$$

and the condition of orthonormality is simply that

$$
\left\langle p_{k}, p_{j}\right\rangle=\left\{\begin{array}{l}
1 \text { if } k=j \\
0 \text { if } k \neq j
\end{array}\right.
$$

For readers unaware of measures just think of this inner product as given by a weight w in the form

$$
\langle f, g\rangle=\int_{I} f(x) g(x) w(x) d x
$$

The Gram-Schmidt process takes a basis for a vector space with an inner product and returns an orthonormal basis. This is simply the way you take 3 linearly independent vectors in \mathbb{R}^{3} and make them perpendicular to each other by use of projections. The text [1] contains a very nice description of these ideas.

Now we start with $\left\{p_{n}\right\}$, a sequence of orthonormal polynomials with respect to a positive measure μ, and assume $\operatorname{deg} p_{n}=n$. Then

$$
\int_{\mathbb{R}} p_{n}(x) p_{m}(x) d \mu(x)=\delta_{n m}= \begin{cases}1 & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

Since $x p_{n}(x)$ is a polynomial of degree $n+1$, one has

$$
\begin{equation*}
x p_{n}(x)=\sum_{j=1}^{n+1} u_{j, n} p_{j}(x) \tag{1}
\end{equation*}
$$

[^0]for some coefficients $u_{j, n}$. Multiply by $p_{r}(x)$, in the range $1 \leq r \leq n+1$, and integrate to obtain
$$
\int x p_{n}(x) p_{r}(x) d \mu(x)=\sum_{j=1}^{n+1} u_{j, n} \int p_{j}(x) p_{r}(x) d \mu(x)=u_{r, n}
$$
by orthogonality. Then
$$
u_{r, n}=\int x p_{n}(x) p_{r}(x) d \mu(x)=\int p_{n}(x)\left(x p_{r}(x)\right) d \mu(x)
$$

If $r+1<n$, then the polynomial $x p_{r}(x)$ (being of degree $r+1$) is orthogonal to $p_{n}(x)$ and this implies $u_{r, n}=0$. Then (1) reduces to

$$
\begin{equation*}
x p_{n}(x)=u_{n-1, n} p_{n-1}(x)+u_{n, n} p_{n}(x)+u_{n+1, n} p_{n+1}(x) \tag{2}
\end{equation*}
$$

Denote $u_{n-1, n}$ by a_{n} and observe that

$$
\begin{equation*}
a_{n}=u_{n-1, n}=\int x p_{n}(x) p_{n-1}(x) d \mu(x) \tag{3}
\end{equation*}
$$

Now

$$
\begin{equation*}
u_{n+1, n}=\int x p_{n}(x) p_{n+1}(x) d \mu(x)=\int x p_{n+1}(x) p_{n}(x) d \mu(x)=a_{n+1} \tag{4}
\end{equation*}
$$

Denote $b_{n}=u_{n, n}$ to obtain from (2)

$$
\begin{equation*}
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x) \tag{5}
\end{equation*}
$$

that is,

$$
\begin{equation*}
a_{n+1} p_{n+1}(x)+\left(b_{n}-x\right) p_{n}(x)+a_{n} p_{n-1}(x)=0 \tag{6}
\end{equation*}
$$

Therefore the three-term relation has been expressed in terms of two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$.

Theorem 1. Let $\left\{p_{n}\right\}$ be a sequence of orthonormal polynomials with respect to a positive measure μ. Assume that all the moments of $d \mu$ are finite. Then there is a third order recurrence of the form

$$
a_{n+1} p_{n+1}(x)=\left(x-b_{n}\right) p_{n}(x)-a_{n} p_{n-1}(x)
$$

where

$$
a_{n}=\int x p_{n}(x) p_{n-1}(x) d \mu(x) \text { and } b_{n}=\int x p_{n}^{2}(x) d \mu(x)
$$

Let γ_{n} be the leading coefficient of p_{n}. Comparing the leading coefficients in (6) gives

$$
a_{n+1}=\frac{\gamma_{n}}{\gamma_{n+1}}
$$

Introduce

$$
P_{n}(x)=\frac{1}{\gamma_{n}} p_{n}(x)
$$

the monic version of the polynomials $\left\{p_{n}\right\}$. Then the three-term recurrence becomes

$$
x \gamma_{n} P_{n}(x)=a_{n+1} \gamma_{n+1} P_{n+1}(x)+b_{n} \gamma_{n} P_{n}(x)+a_{n} \gamma_{n-1} P_{n-1}(x) .
$$

Divide by γ_{n+1} to obtain the next statement.
Theorem 2. The monic polynomials $P_{n}(x)$ satisfy the recurrence

$$
\begin{equation*}
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-a_{n}^{2} P_{n-1}(x) . \tag{7}
\end{equation*}
$$

Now consider the sequence of orthonormal polynomials $\left\{p_{n}(x)\right\}$ constructed for a measure $d \mu_{t}=e^{x t} d \mu$. These satisfy a third order recurrence

$$
\begin{equation*}
x p_{n}(x, t)=a_{n+1}(t) p_{n+1}(x, t)+b_{n}(t) p_{n}(x, t)+a_{n}(t) p_{n-1}(x, t), \tag{8}
\end{equation*}
$$

where now the coefficients depend on t. The next discussion appears in [3].
Recall that

$$
\begin{equation*}
a_{n}(t)=\int x p_{n}(x, t) p_{n-1}(x, t) d \mu_{t}(x) \text { and } b_{n}(t)=\int x p_{n}^{2}(x, t) d \mu_{t}(x) . \tag{9}
\end{equation*}
$$

To simplify notation, we will drop the variables in $p_{n}(x, t)$ in (8) and write it as

$$
\begin{equation*}
x p_{n}=a_{n+1} p_{n+1}+b_{n} p_{n}+a_{n} p_{n-1} . \tag{10}
\end{equation*}
$$

Differentiate with respect to t gives

$$
\begin{align*}
x p_{n}^{\prime} & =a_{n+1}^{\prime} p_{n+1}+b_{n}^{\prime} p_{n}+a_{n}^{\prime} p_{n-1} \tag{11}\\
& +a_{n+1} p_{n+1}^{\prime}+b_{n} p_{n}^{\prime}+a_{n} p_{n-1}^{\prime},
\end{align*}
$$

where ${ }^{\prime}$ is derivative with respect to t. Observe that the degree of p_{n}^{\prime} (in x) is at most the degree of p_{n} (the leading coefficients might disappear). Multiply (11) by p_{n+1} and integrate to produce

$$
\begin{align*}
\int x p_{n}^{\prime} p_{n+1} d \mu_{t}= & a_{n+1}^{\prime} \int p_{n+1}^{2} d \mu_{t}+b_{n}^{\prime} \int p_{n} p_{n+1} d \mu_{t} \tag{12}\\
& +a_{n}^{\prime} \int p_{n-1} p_{n+1} d \mu_{t}+a_{n+1} \int p_{n+1}^{\prime} p_{n+1} d \mu_{t} \\
& +b_{n} \int p_{n}^{\prime} p_{n+1} d \mu_{t}+a_{n} \int p_{n-1}^{\prime} p_{n+1} d \mu_{t} .
\end{align*}
$$

Now recall that the polynomials p_{n} are orthonormal, so the integral against any polynomial of lower degree vanishes. This reduces (12) to

$$
\begin{equation*}
\int x p_{n}^{\prime} p_{n+1} d \mu_{t}=a_{n+1}^{\prime}+a_{n+1} \int p_{n+1} p_{n+1}^{\prime} d \mu_{t} . \tag{13}
\end{equation*}
$$

Now multiply the relation

$$
\begin{equation*}
x p_{n+1}=a_{n+2} p_{n+2}+b_{n+1} p_{n+1}+a_{n+1} p_{n} \tag{14}
\end{equation*}
$$

by p_{n}^{\prime} and integrate. The non-vanishing terms are

$$
\begin{equation*}
\int x p_{n}^{\prime} p_{n+1}=a_{n+1} \int p_{n} p_{n}^{\prime} \tag{15}
\end{equation*}
$$

and replacing in (14) gives

$$
\begin{equation*}
a_{n+1}^{\prime}=a_{n+1}\left[\int p_{n} p_{n}^{\prime}-\int p_{n+1} p_{n+1}^{\prime}\right] \tag{16}
\end{equation*}
$$

To simplify this relation, differentiate the normalization

$$
\begin{equation*}
\int p_{n}^{2} d \mu_{t}=\int p_{n}^{2} e^{x t} d \mu=1 \tag{17}
\end{equation*}
$$

with respect to t to produce

$$
\begin{equation*}
\int\left(x p_{n}^{2}+2 p_{n} p_{n}^{\prime}\right) e^{x t} d \mu=0 \tag{18}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
b_{n}=\int x p_{n}^{2} d \mu_{t}=-2 \int p_{n} p_{n}^{\prime} d \mu_{t} \tag{19}
\end{equation*}
$$

Replace this in (16) to obtain

$$
\begin{equation*}
a_{n+1}^{\prime}=a_{n+1}\left[-\frac{1}{2} b_{n}+\frac{1}{2} b_{n+1}\right] . \tag{20}
\end{equation*}
$$

This equation is written as

$$
\begin{equation*}
a_{n}^{\prime}=\frac{1}{2} a_{n}\left(b_{n}-b_{n-1}\right) \tag{21}
\end{equation*}
$$

after shifting n to $n-1$. Multiply by a_{n} to produce the alternative form

$$
\begin{equation*}
\frac{d}{d t} a_{n}^{2}=a_{n}^{2}\left(b_{n}-b_{n-1}\right) \tag{22}
\end{equation*}
$$

Now multiply (11) by p_{n} and integrate. The non-vanishing terms give

$$
\begin{equation*}
\int x p_{n} p_{n}^{\prime}=b_{n}^{\prime}+a_{n+1} \int p_{n+1}^{\prime} p_{n}+b_{n} \int p_{n}^{\prime} p_{n} \tag{23}
\end{equation*}
$$

Then multiply (10) by p_{n} and integrate to derive

$$
\begin{equation*}
\int x p_{n} p_{n}^{\prime} d \mu_{t}=b_{n} \int p_{n} p_{n}^{\prime} d \mu_{t}+a_{n} \int p_{n}^{\prime} p_{n-1} d \mu_{t} \tag{24}
\end{equation*}
$$

from which one obtains

$$
\begin{equation*}
b_{n}^{\prime}=a_{n} \int p_{n}^{\prime} p_{n-1} d \mu_{t}-a_{n+1} \int p_{n+1}^{\prime} p_{n} d \mu_{t} \tag{25}
\end{equation*}
$$

To simplify this identity, differentiate

$$
\begin{equation*}
\int p_{n} p_{n+1} e^{x t} d \mu(x)=0 \tag{26}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\int p_{n+1}^{\prime} p_{n}+\int x p_{n+1} p_{n}=0 \tag{27}
\end{equation*}
$$

Therefore (9) gives

$$
\begin{equation*}
\int p_{n+1}^{\prime} p_{n} d \mu_{t}=-a_{n+1} \tag{28}
\end{equation*}
$$

Replacing in (25) gives

$$
\begin{equation*}
\frac{d b_{n}}{d t}=a_{n+1}^{2}-a_{n}^{2} \tag{29}
\end{equation*}
$$

Theorem 3. Let $\left\{p_{n}\right\}$ be the sequence of orthonormal polynomials with respect to the measure $d \mu_{t}=e^{x t} d \mu$. These polynomials satisfy the recurrence

$$
\begin{equation*}
x p_{n}(x, t)=a_{n+1}(t) p_{n+1}(x, t)+b_{n}(t) p_{n}(x, t)+a_{n}(t) p_{n-1}(x, t) . \tag{30}
\end{equation*}
$$

The coefficients $a_{n}(t)$ and $b_{n}(t)$ satisfy the system of differential equations

$$
\begin{align*}
\frac{d}{d t} a_{n} & =\frac{1}{2} a_{n}\left(b_{n}-b_{n-1}\right) \tag{31}\\
\frac{d}{d t} b_{n} & =a_{n+1}^{2}-a_{n}^{2}
\end{align*}
$$

The system can be rewritten in the (more standard) equivalent form

$$
\begin{align*}
\frac{d}{d t} a_{n} & =a_{n}\left(b_{n+1}-b_{n}\right) \tag{32}\\
\frac{d}{d t} b_{n} & =2\left(a_{n}^{2}-a_{n-1}^{2}\right)
\end{align*}
$$

The paper [2] contains a nice introduction to this important integrable system.

References

[1] G. E. Andrews, R. Askey, and R. Roy. Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York, 1999.
[2] G. Teschl. Almost everything you wanted to know about the Toda equation. Jahresber. Deitsch. Math-Verein., 103:149-162, 2001.
[3] W. Van Assche. Orthogonal polynomials and Painlevé equations, volume 27 of Australian Mathematical Society Lecture Series. Cambridge University Press, 2018.

[^0]: Date: September 28, 2019.

