THE VALUES OF $\zeta(2 n)$

In this note we use the expansion

$$
\begin{equation*}
\pi x \cot (\pi x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n}}{(2 n)!} B_{2 n} \pi^{2 n} x^{2 n} \tag{1}
\end{equation*}
$$

and the product representation

$$
\begin{equation*}
\sin (\pi x)=\pi x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right) \tag{2}
\end{equation*}
$$

to obtain an expression for

$$
\begin{equation*}
\zeta(2 n)=\sum_{k=1}^{\infty} \frac{1}{k^{2 n}} \tag{3}
\end{equation*}
$$

Taking logarithms in (2) gives

$$
\begin{equation*}
\ln \sin (\pi x)=\ln \pi+\ln x+\sum_{n=1}^{\infty} \ln \left(1-\frac{x^{2}}{n^{2}}\right) \tag{4}
\end{equation*}
$$

and differentiation yields

$$
\begin{equation*}
\pi \cot (\pi x)=\frac{1}{x}+\sum_{n=1}^{\infty} \frac{2 x}{x^{2}-n^{2}} \tag{5}
\end{equation*}
$$

Now use the geometric expansion

$$
\begin{equation*}
\frac{2 x}{x^{2}-n^{2}}=-\frac{2 x}{n^{2}} \frac{1}{1-x^{2} / n^{2}}=-2 \sum_{j=0}^{\infty} \frac{x^{2 j+1}}{n^{2 j+1}} \tag{6}
\end{equation*}
$$

in (5) to produce

$$
\begin{aligned}
\pi \cot (\pi x) & =\frac{1}{x}-2 \sum_{j=0}^{\infty}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2 j+2}}\right) x^{2 k+1} \\
& =\frac{1}{x}-2 \sum_{j=1}^{\infty} \zeta(2 j) x^{2 j-1}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\pi x \cot (\pi x)=1-2 \sum_{j=1}^{\infty} \zeta(2 j) x^{2 j} \tag{7}
\end{equation*}
$$

Comparing with (1) gives

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n-1} B_{2 n} \frac{2^{2 n-1}}{(2 n)!} \pi^{2 n} \tag{8}
\end{equation*}
$$

Therefore $\zeta(2 n)$ is a rational multiple of $\pi^{2 n}$.
The formula implies that $(-1)^{n-1} B_{2 n}>0$. A direct proof of this result appears in [1].

In the expansion (7), it would be nice if the term " 1 " on the right, would correspond to the value in the sum with $j=0$. This would require

$$
\begin{equation*}
\zeta(0)=-\frac{1}{2} \tag{9}
\end{equation*}
$$

This is indeed true, after the Riemann zeta function $\zeta(s)$ is extended in a proper form, to include $s=0$ in its domain.

References

[1] L. J. Mordell. The sign of the Bernoulli numbers. Amer. Math. Monthly, 80:547-548, 1973.

