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ABSTRACT. In this paper we compute the 2-adic valuations of some polynomials associated
with the definite integral

/°° dx
o (2% +2az?+1)mtl’

1. Introduction.

In this paper we present a study of the coefficients of a polynomial defined in terms of
the definite integral
dx

1.1 N, : =
(1.1) 04(a;m) /0 (z* + 2ax% + 1)m+1

where m is a positive integer and a > —1 is a real number.

Apart from their intrinsic interest, these polynomials form the basis of a new algorithm
for the definite integration of rational functions.

An elementary calculation shows that

m+3/2
(1.2) Py,(a) := - (a + 1)™2 Ny 4(a; m)

is a polynomial of degree m in a with rational coefficients. Let
(1.3) Pn(a) =) dy(m)a’.
1=0

Then it can be shown that d;(m) is equal to
I m-l m . . .
=5 k) \2(s+j) m—k g -
from which it follows that d;(m) is a rational number with only a power of 2 in its denomina-

tor. Extensive calculations have shown that, with rare exceptions, the numerators of d;(m)
contain a single large prime divisor and its remaining factors are very small. For example

de(30) = 2'2.7.11-13-17-31-37-639324594880985776531.
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Similarly, d;¢(200) has 197 digits with a prime factor of length 137 and its second largest
divisor is 797. This observation lead us to investigate the arithmetic properties of d;(m). In
this paper we discuss the 2-adic valuation of these d;(m).

The fact that the coefficients of P, (a) are positive is less elementary. This follows from
a hypergeometric representation of Ny 4(a;m) that implies the expression

(1.4) d(m) = 2 2’”22’“ (27” %) (m; k) (?)

We have produced a proof of (1.4) that is independent of this hypergeometric connection
and is based on the Taylor expansion

15 yeeviee = v (1o R )

see [1] for details.
The expression (1.4) can be used to efficiently compute the coefficients d;(m) when [ is
large relative to m. In Section 8 we derive a representation of the form

m

di(m) = W (al(m) [ 1@k -1) = gi(m) kll(% + 1))

k=1
where a;(m) and (5;(m) are polynomials in m of degrees [ and [ —1 respectively. For example

(1.6) dy(m) = ﬁ((zmﬂ)ﬁ (4k — 1) ﬁ4k+1)

k=1

This representation can now be used to efficiently examine the coefficients d;(m) when [ is
small compared to m. In Section 7 we prove that

vo(di(m)) = 1—2m+1/2<<m2+1>)+82(m)

where so(m) is the sum of the binary digits of m.

2. The polynomial P,,(a).

Let
° dz
Nosla;m) = .
0.4(a;m) /0 (z* + 2a22 4+ 1)™"
Then
mt3/2 1/2
(2.1) P,(a) = - (a+1)"" / No.a(a;m)

is a polynomial in a with positive rational coefficients. The proof is elementary and is
presented in [1]. It is based on the change of variables z = tan @ and u = 26 that yields

g 1+ cosu)?m+t!
N074(a; m) = 2_m_1/ ( ) m+1
o (1+a)+(1—a)cos?u)
Expanding the numerator and employing the standard substitution z = tanu produces

du.
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(2.2) Noa(a;m) = 272m 3/22 <2m+ 1) (a — 1)

a + 1)m7u—|—1/2
mzy mev LB(m—k-l—l/Q 1/2)
p k) (a—1)k ’

where B is Euler’s beta function, defined by

['(z)l(y)
L(z+y)

The expression (2.1) now produces the first formula for d;(m) given in the Introduction.

B(z,y) =

3. The triple sum for d;(m).

The expression for the coefficients d;(m) given in the Introduction can be written as

LSS () ) )
(3.1)

This expression follows directly from expanding (2.3) and the value

B(j+1/2,1/2) = 2%<%>

J

It follows that d;(m) is a rational number whose denominator is a power of 2, therefore

Lemma 3.1. Let p be an odd prime. Then
vp(di(m)) > 0.

The positivity of d;(m) remains to be seen.

4. The single sum expression for d;(m).

An alternative form of the coefficients d;(m) is obtained by recognizing Ny 4(a;m) as a
hypergeometric integral. A standard argument shows that

Nos(am) ()

grrara(q 4 2 b [ m o 1 1/2 = mi (14 a) /2]

where 5 F] is a hypergeometric function, defined by

oFila,b,c;z] = z",

where (r); is the rising factorial

(re = r(r+1)(r+2)---(r+k-1).
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It follows that P, (a) is the Jacobi polynomial of degree m with parameters m + 1/2 and
—(m + 1/2). Therefore the coefficients are given by

(4.1) di(m) = 2‘2"“%2'“(22:?) (mnt k) (];)

from which their positivity is obvious. We have obtained a proof of (4.1) that is indepen-
dent of hypergeometric considerations and is based on the presence of P, (a) in the Taylor
expansion (1.5). See [1] for details.

The formula (4.1) is very efficient for the calculation of the coefficients d;(m) when [
approximately equal to m. For instance, we have

dn(m) = 27 (2”’);

m

2
dm—l(m) — 2—(m+1)< m)

m
The expression (4.1), rewritten in the form
“ 2m —2k\ (m+k\ (k
d — 2—(2m—l) 2k—l
shows that

(4.2) ve(dy(m)) > 1 —2m.

5. Basics on valuations.

Here we describe what is required on valuations.
Given a prime p and a rational number r, there exist unique integers a, b, m with pJa, b such
that

(5.1) r = —p™

The integer m is the p—adic valuation of 7 and we denote it by v,(r).
Now recall a basic result of number theory which states that

(5.2) vy(ml) = i L%J .

k=1

Naturally the sum is finite and we can end it at k = |log, m].
There is a famous result of Legendre [2, 4] for the p—adic valuation of m!. It states that

m — sp(m)
p—1

where s,(m) is the sum of the base—p digits of m. In particular

(5.3) vp(m!) =

(5.4) vp(m!) = m— sy(m).
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6. The constant term.

The calculation of the 2-adic valuation of the coefficients can be made very explicit for
the first few. We begin with the case of the constant term.
We first compute

> dx
Noa(Oym) = [ — o
04(0;m) /0 (2% + 1)m+

via the change of variable u = z*, yielding

Noa(0;m) = iB(1/4,m+3/4)

m

T
= pl02m+3/2 H(4k - 1).
k=1
Therefore
1 m
NI = 4k —1).
(6.1) o) = [ 1081

Theorem 6.1. The 2-adic valuation of the constant term do(m) is given by

vo(do(m)) = —(m+ rp(m!))
= s9(m) — 2m.

Proof: This follows directly from (6.1). The second expression comes from (5.4). O

Using the single sum formula for dy(m) we obtain

(S - e

= so(m).

Corollary 6.2.

Corollary 6.3. The 2-adic valuation of the constant term do(m) satisfies
vs(do(m)) > 1—2m
with equality if and only if m is a power of 2.
We now present a different proof of Corollary 3 that is based on the expression

(6.2) do(m) = —= [k —1)

ml2m
k=1
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and the single sum formula

= 2m —2k\ (m+k
22 = 2k
i = 2 (0 ()

2m 2m —2k\ (m+k
6.3 = 2) 2kt :
63 () o (2272
Proof: From (6.3) it follows that

va(do(m)) > 1—2m

because the central binomial coefficient is an even number. Now from (6.2) we obtain

(6.4) vo(do(m)) = —(m + va(m))).

From (5.2) we have

Thus, from (6.4),

vo(do(m)) = — i [;J .

We know 15(dp(m)) > 1 — 2m, so it suffices to determine when equality occurs. Indeed, the
equation

WE

(6.5) {EJ = 2m-—1

2k

=~
Il

0

can be solved explicitly. Write m = 2°r with r odd, and say 2 < r < 2¥*!, Then
|m| . o1 r r r
P B ad LI E A R Fd
k=0

and (6.5) leads to

r NT 007'7'
FIRDICED A

and we conclude that r = 1. The proof is finished.

r—1

WE

k=1

7. The linear term.

From the triple sum we obtain

-1

= sla_ 2k (2m +2\ [m—s—1
o = 3 3 oo () G (750

s=0 k=s+1

3

Il
o
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Differentiating (2.1) and d;(m) = P}, (0) we produce

1 m m
di(m) = —o s ((Qm-l—l)H (4k — 1) H4k+1>
k=1

k=1

Therefore the linear coefficient is given in terms of

(7.1) Ay(m) = 2m+1)[J(@k—1) = [k +1)
k=1 k=1
so that
Ai(m)
We prove

Theorem 7.1. The 2-adic valuation of the linear coefficient di(m) is given by

vo(ds (m)) = 1—2m+1/2(<m;_1>>+82(m).

Recall that the inequality v5(d;(m)) > 1—2m follows directly from the single sum expression.
The theorem determines the exact value of the correction term.

Proof: We prove
vy (Ai(m)) = n(2m(m+1))

- en((71)

The result then follows from (5.4) and (7.2).
Define

and

Then evidently A;(m) = By, — Cp,.
We show

e
b) 15(Cm) > 3+ 15 <<m2+1>)

from which the result follows immediately.
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a) We have

oy

3

I
’:]3

(4k+1)—1

B
Il

1

+1
— ( 4m+1J m+1D 1
Jj=1 J

_ St [

— J

~

m—+1 i m+1
— 22 22k
e
m—+1 - m—+1
= 2 +) 2%
(")
where [7'] is an (unsigned) Stirling numbers of the first kind, i.e.,

zx+1)--(z+m—-1) = Xm:[rlﬂ ¥

k=0

To prove a), it suffices to show that

w(2("3)) < ()

for 2 <k <m.
To do this we observe that there exist integers Cy; (kK > 1, i > 0) such that

k—1
m m
[m—k] B ;«(21@—@')0’”
see [3, p. 152]. For example
[ m ] _(m
m—-1]  \2
[ m ] _ 3 m 49 m
m-2] 4 3
[ m ] m m m
) = () e (5) ()
[ m ] m m m m
= 1 21 1 24 .

(] = ) ) ofs) )

Hence the rational number

m(m—1)---(m—k)
(2k)!

u =
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divides [m"jk] in the sense that the quotient
[m’rﬁk]
u

is an integer.
It follows that

(4]

where we have used (5.3).
Hence, provided & > 3,

W(["”* D > wy((m+ Dm(m —1) -+ (m+1— k) — 2k + so(k)

v

vo(m(m —1)---(m —k)) — va((2k)!)

= vy(m(m —=1)---(m —k)) = 2k + s5(k)

m+1-—k
so that

2%k m—+1
A )

Y]

va((m + 1)m) + va((m — 1)(m — 2)) + s2(k)
> w((m+1)m)+1+1
«(2("3))

provided m > 3. ( For m =1, 2 it is easy to check 1»(B,,) = 2.)
On the other hand, if £ = 2, then

e = o) =2(5)

im@%ﬂﬂm—%@m—n,

V

so if m is even, m > 4, we have

”2<[m7i2D = v (W)-ﬁ-lh(m—?)—z&(l?)

while if m is odd, m > 3, we have

() - (e
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so in either event

Hence

2 (#n2]) =
(

as desired.

We now prove b):

C = (2m+1)ﬁ(4k 1) -1

k=1

We have

3

4k —1) = 4™ ﬁ(k —1/4)

B
Il
—

m—+1

- -y "

thus

When m is even, we have

Crp = (2m+1)—(2m+1)-4[m;:1]—1+(2m+1)i[mﬁiik](—4)k
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so, as in the proof of a), we have

. m+1
vy (Cr) > min (15(2m?) vy | 42 m—l])’

w([nta]) o ()

> min (1 + 2v5(m), 3+ s ((m;q)))

> 3+ ("))

since m is even.
On the other hand, when m is odd we observe that

m

Co+1 = @2m+1) ][4k —1)
k=1
and
Cop1+1 = (2m+3)(dm+3) [[(4k —1)
k=1
SO
Crmi1 +1 _ Cu+1
2m+3)(4m+3)  2m+1
and hence
(Crs1 +1)(2m + 1)
(@ -
(2m + 3)(2m + 3)
(2m + 1)Cm+1 - 8(m + 1)2
(7.3) =
(2m + 3)(4m + 3)
S0
vo(Cr) > min (1e(Cryqr), 2v2(m + 1) + 3)
>

m+1
("))
since m is odd.

This completes the proof.

The corresponding question of the 3-adic valuation of d;(m) seems to be more difficult. We
propose.

Problem 7.2.  Prove the ezistence of a sequence of positive integers m; such that
v3(di(m;)) = 0. Extensive calculations show that
(74) mjt1 —m; € {2, 7, 20, 61, 182, - - }

where the sequence {q;} in (7.4) is defined by ¢ = 2 and ;41 = 3¢; + (—1)7**. It would be
of interest to know whether vs(d,(m)) is unbounded: the mazimum value for 2 < m < 20000
is 12, so perhaps v3(di(m)) = O(logm) as m — oo.
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8. The general situation.

In this section we prove the existence of polynomials a;(z) and 5;(z) with positive integer
coefficients such that

d(m) = #(al(m>H(4k—1)—5l(m>H(4k+1>).

I 19m+1
Im!2 P P

These polynomials are efficient for the calculation of d;(m) if [ is small relative to m, so they
complement the results of Section 4.
For example

ap(m) = 1
ai(m) = 2m+1
a(m) = 2(2m*+2m +1)
az(m) = 4(2m+1)(m* +m + 3)
as(m) = 8(2m* + 4m® + 26m? + 24m +9).
and
Bo(m) 0
fi(m) = 1
Ba(m) = 2(2m+1)
Bs(m) = 12(m*+m+1)

Bi(m) = 8(2m+1)(2m* +2m + 9).

The proof consists in computing the expansion of P,,(a) via the Leibnitz rule:

om+3/2 L sy d\!7 N
P = _ 1 m+1/2 R N, ]
o T =0 <]) (da) (a+1) a=0 (da) oalasm)

J a=0
We have
d\’ o (2m+2)! (m—7r+1)!

_ a 1ym+1/2 _ g2
(8.1) (da) (a+1) a=0 (m+1)! (2m — 2r + 2)!
and

d\" (m+r)! ® xr

2 L) Noula; = (c)yr Ty [ T

(8.2) (da) oa(a;m) a=0 (=1) m! /0 (z* + 1)mtrtt

The integral is evaluated via the change of variable t = z* as

/°° 2% dx 1B r+1 +7"+3
———— = -Bl=+-m+=-+-].
o (@t 1ymirl 2T ey
This yields
d\" (—D)r@r)! 7 &
(8.3) <%) Noa(a;m) o T omrrmman ol H(4l —1+2r).
1=1
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Therefore

NEm+2)! < (=1)i(m—1+j+ 1)) ﬁ

PY(0) =
m (0) = 2m+2ml(m + 1)! p= «J1(1 = 7)!(2m =20 + 2] —|— 2)!

— 1+ 2j).

We now split the sum according to the parity of j. In the case j is odd (= 2t — 1) we use

ﬁ41/—1+2] = 172[(41/—%1)(%L 41/+1/H41/+ )

v=

1
and if j is even (= 2t) we employ

[[4v—1+2j) = H(4”—1)< I1 (41/—1)/1_[(41/—1)).

v=1 v=1

We conclude that

d(m) = X(m,0)[J(4v—1) =Y (m, 1) [J(4v +1)
v=1 v=1
with
X(m.1) = 2! 2 —l+ 24+ )4 T (Av —1)
2m+2m)(m +1)! (2t)! l —26)1(2m — 21 + 4t + 2)! Hz:1(4l/ - 1)
and
Y(m,l) =
(2m +2)! L+1)/2] (m — 1+ 20)1(4t — 2)! H’V”:J’Tf;ll (4v +1)

2mtAml(m + 1)1 & (2t -DPR(1—-2t+1)1(2m 20+ 4t)! [\ (dv+1)

The quotients of factorials appearing above can be simplified via

-2t

(m+1)! :
—1+2t+1
(m—1+2t+1)! E(]er L+2t+1)
and
(2m -+ 2)' 1—2t et . s .
= 2 (t+m—1+2t+1) (2i+2m —20+4t+1) ).
T 4TD Il Il

We conclude that

di(m) = m< li[l4y—1 — By( )H(4y+ ))

with

[1/2] 4t Hm+t t m
v=m+1
a(m) = 1! E : 70 2t Ht1(4y+_ 5 (H(41/ — 1)) H (2v +1)

v=1 —(1—2t—1)
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and

L(t+1)/2) (4-2) 7L (4w + 1) M
Bi(m) = 1! YT = v+
; 211 =2t + 1)\ [T (4w +1) u:ml_([zat)

The identity

is now employed to produce

[1/2] I m+t m t—1
ay(m) = Z(%) [ @w-1 J[ @+)]Jer+y

t=0 v=m+1 v=m—(l—2t—1) v=1

and
L(1+1)/2] I mA+t—1 m —1
Bm) = (21&-1) [ @w+1 ] @+1]Jev-1).
t=1 v=m+1 U:m—(l—Zt) v=1

We have proven:

Theorem 8.1. There exist polynomials oy(x) and 5y(x) with integer coefficients such that

di(m) = l'm'ﬁ (al(m) [k —1) = gi(m) [ J(4k + 1)) -

k=1 k=1

Based on extensive numerical calculations we propose

Conjecture 8.2.  All the roots of the polynomials oy(m) and [i(m) lie on the line
Re(m) = —1/2.
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