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Abstract. We analyze properties of the 2-adic valuations of an integer se-
quence that originates from an explicit evaluation of a quartic integral.

1. Introduction

The sequence of positive integers

(1.1) bl,m =

m
∑

k=l

2k

(

2m− 2k

m− k

)(

m+ k

m

)(

k

l

)

for m ∈ N and 0 ≤ l ≤ m appears in the evaluation of the definite integral

(1.2) N0,4(a;m) =

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
.

In [1] it was shown that the polynomial defined by

Pm(a) := 2−2m
m
∑

l=0

bl,ma
l

satisfies

(1.3) Pm(a) =
1

π
2m+3/2(a+ 1)m+1/2N0,4(a;m).

The evaluation of bl,m using (1.1) is efficient if l is close to m. For instance,

(1.4) bm,m = 2m

(

2m

m

)

and bm−1,m = 2m−1(2m+ 1)

(

2m

m

)

.

An expression for a closely related integer sequence, Al,m, was established in [2]
and is given in the next theorem.

Theorem 1.1. Define

Al,m :=
l!m!

2m−l
bl,m.(1.5)

Then there exist polynomials αl(m) and βl(m), with positive integer coefficients,
such that

(1.6) Al,m = αl(m)
m
∏

k=1

(4k − 1) − βl(m)
m
∏

k=1

(4k + 1).

The degrees of αl and βl are l and l − 1, respectively.
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This formula leads to an efficient method of evaluating the coefficients Al,m if l
is small. For instance,

A0,m =
m
∏

k=1

(4k − 1),(1.7)

A1,m = (2m+ 1)

m
∏

k=1

(4k − 1) −

m
∏

k=1

(4k + 1).(1.8)

The polynomial

(1.9) Xl(s) := αl

(

s− 1

2

)

satisfies the recurrence

(1.10) Xl+1(s) = 2sXl(s) − (s2 − (2l− 1)2)Xl−1(s),

with initial conditions X0(s) = 1, X1(s) = s. Similarly,

(1.11) Yl(s) := βl

(

s− 1

2

)

satisfies the same recurrence (1.10) but with initial conditions Y0(s) = 0, , Y1(s) = 1.
This was used by John Little [9] to establish the next theorem.

Theorem 1.2. All the zeros of αl(m) and βl(m) lie on the line Rem = − 1
2 .

In this paper we study arithmetical properties of the sequence {bl,m}, or equiv-
alently, {Al,m}. Henceforth we assume that the index l ∈ N is fixed and m ≥ l.

The results described in this paper started as empirical observations on the be-
havior of the highest power of 2 that divides the numbers Al,m. For any integer x,
we denote this power by ν2(x). We now give an algorithm that will start with the
sequence {ν2(Al,m) : m ≥ l} and produce at the end a constant sequence. Here we
only illustrate this algorithm with the case l = 59 and introduce some terminology.
The full details are discussed in Section 4.

Figure 1 shows the graph of ν2(A59,m) for 59 ≤ m ≤ 197. The horizontal axis is
m− 58, so the indexing starts at 1.
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Figure 1. The 2-adic valuation of A59,m for 59 ≤ m ≤ 196
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The figure suggests that the values of {ν2(A59,m) : m ≥ 59} has a block structure
meaning that it is composed of consecutive blocks, all of the same length. Indeed,
ν2(A59,m) begins with

{172, 172, 174, 174, 173, 173, 174, 174, 172, 172, 178, 178, 177, 177, . . .}.

This motivates the next definition.

Definition 1.3. Let s ∈ N, s ≥ 2. We say that a sequence {aj : j ∈ N} is simple
of length s ( or s-simple) if, for each t ∈ {0, 1, 2, · · · }, we have

(1.12) ast+1 = ast+2 = · · · = as(t+1).

The sequence {aj : j ∈ N} is said to have a block structure if it is s-simple for some
s ≥ 2. The jump at j is defined by aj+1 − aj.

Note. The main result, presented as Theorem 2.3, relates the 2-adic valuation of
Al,m to that of a Pochhammer symbol, namely

(1.13) ν2(Al,m) = ν2((m+ 1 − l)2l) + l.

This permits us to simplify the difference of their consecutive values. Theorem 3.1
states

(1.14) ν2(Al,m+1) − ν2(Al,m) = ν2(m+ l + 1) − ν2(m− l + 1).

We will use this fact to establish in Theorem 3.2 that the sequence {ν2(Al,m) : m ≥

l} is 21+ν2(l)-simple.
We now proceed to the second step of the algorithm; given that {ν2(A59,m) : m ≥

59} is 2-simple, we take every other term of this sequence to eliminate repetitions.
The result appears in Figure 2 and the data begins with

{172, 174, 173, 174, 172, 178, 177, · · · }.
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175

176

177

178

Figure 2. Every other term from Figure 1

The third step is to subtract from Figure 2 the 2-adic valuation of the index m.
This produces data starting with

{172, 173, 173, 172, 172, 177, 177, 175, 175, 176, 176, 175, 175, 177, 177, · · · }.

This set almost has a block structure, except that the first element appears only
once. We now add this extra element to produce a genuine block structure. The
resulting sequence, shown in Figure 3, is 2-simple.
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Figure 3. The end of the first cycle

We will show that at this point one always gets a block structure. The length of
the block is not necessarily the same in each cycle. This is the end of the cycle. We
now go back to the first step and begin a new cycle.

The main goal of this paper is to describe this algorithm and to prove that it
yields a constant sequence after a finite number of steps. The next figures display
the sequences at the end of each cyle of the algorithm for l = 59.
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Figure 4. End of the second cycle for l = 59
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Figure 5. End of the third cycle for l = 59

The algorithm - in detail.
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Figure 6. End of the fourth cycle for l = 59
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Figure 7. End of the fifth cycle for l = 59

The maps F and T . The algorithm requires two operators defined on sequences:

F ({a1, a2, a3, · · · }) := {a1, a1, a2, a3, · · · },(1.15)

and

T ({a1, a2, a3, · · · }) := {a1, a3, a5, a7, · · · }.(1.16)

Now introduce the sequence c by

c := {ν2(m) : m ≥ 1} = {0, 1, 0, 2, 0, 1, 0, 3, 0, · · · }.(1.17)

The algorithm:

1) Start with the sequence X1(l) := {ν2(Al(m)) : m ≥ l } .

2) Find n1 ∈ N so that the sequenceX1(l) is 2n1 -simple. Define Y1(l) := T n1 (X1(l)).
At the initial stage, Theorem 3.2 shows that n1 = 1 + ν2(l).

3) Introduce the shift Z1(l) := Y1(l) − c.

4) Define X2(l) := F (Z1(l)).

The sequence X2 is 2n2-simple. Then return to step 2) with X2 instead of X1.

Definition 1.4. Let ω(l) be the number of steps required for the algorithm to yield
a constant sequence. The sequence of integers

Ω(l) :=
{

n1, n2, n3, · · · , nω(l)

}

(1.18)



6 TEWODROS AMDEBERHAN, DANTE MANNA, AND VICTOR H. MOLL

Table 1. Reduction sequence for 1 ≤ l ≤ 15.

l binary form Ω(l)
4 100 3
5 101 12
6 110 21
7 111 111
8 1000 4
9 1001 13
10 1010 22
11 1011 112
12 1100 31
13 1101 121
14 1110 211
15 1111 1111

is called the reduction sequence of l. The number ω(l) will be called the reduction
length of l. The constant sequence obtained after ω(l) steps is called the reduced
constant.

We prove in Corollary 4.4 that ω(l) <∞. Therefore the algorithm yields a con-
stant sequence in a finite number of steps.

Table 1 shows the results of the algorithm for 4 ≤ l ≤ 15.

We also provide a combinatorial interpretation of Ω(l). This requires the com-
position of the index l.

Definition 1.5. Let l ∈ N. The composition of l, denoted by Ω1(l), is defined as
follows: write l in binary form. Read the sequence from right to left. The first
part of Ω1(l) is the number of digits up to and including the first 1 read in the
corresponding binary sequence; the second one is the number of additional digits
up to and including the second 1 read, and so on.

For example,

(1.19) Ω1(13) = {1, 2, 1}.

and

(1.20) Ω1(14) = {2, 1, 1}.

Observe that Ω1(13) = Ω(13) and Ω1(14) = Ω(14). We claim that this is always
true.

Theorem 1.6. The reduction sequence Ω(l) associated to an integer l is the se-
quence of compositions of l, that is,

(1.21) Ω(l) = Ω1(l)

This theorem is proved in Section 4.
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2. The 2-adic valuations of Al,m

Given a prime p and a rational number r, there exist unique integers a, b, c with
a and b not divisible by p and gcd(a, b) = 1 such that

(2.1) r =
a

b
pc.

The integer c is the p-adic valuation of r and we denote it by νp(r). Observe that
we depart from the usual convention c = −νp(r). There are many well-known
elementary results concerning the p-adic valuations of integers, such as

(2.2) νp(m!) =
∞
∑

k=1

b
m

pk
c.

Naturally this sum is finite, ending at k = blog2mc. A famous result of Legendre
[4, 7] states that

(2.3) νp(m!) =
m− sp(m)

p− 1
,

where sp(m) is the sum of the base-p digits of m. In particular,

(2.4) ν2(m!) = m− s2(m).

Kummer’s result

(2.5) ν2

((

m

k

))

= s2(k) + s2(m− k) − s2(m),

follows directly from here.

We describe divisibility properties of the sequence {Al,m}. As the factorization
of factorials is elementary, this provides similar properties of {bl,m}.

Lemma 2.1. For the prime p = 2, we have

ν2(Al,m) = ν2(l!) + ν2(m!) −m+ l + ν2(bl,m),(2.6)

and for p odd,

νp(Al,m) = νp(l!) + νp(m!) + νp(bl,m).(2.7)

The 2-adic value of b0,m follows directly from (1.7) and (2.6). Clearly A0,m is
odd, so ν2(A0,m) = 0. Therefore ν2(b0,m) = m− ν2(m!) and Legendre’s result (2.4)
reduces this to

(2.8) ν2(b0,m) = s2(m).

The coefficients b1,m were analyzed in [2] using formula (1.8). The main result
is:

Theorem 2.2. The 2-adic valuation of A1,m is given by

(2.9) ν2(A1,m) = ν2(2m(m+ 1)) = ν2(m(m+ 1)) + 1.

Then (2.6) yields

(2.10) ν2(b1,m) = s2(m) + ν2(m(m+ 1)).
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The key elements of the proof are to expand the products in (1.8) using the
Stirling numbers of the first kind, whose generating function is

(2.11) x(x + 1)(x+ 2) · · · (x+ r − 1) =
r
∑

k=0

[

r
k

]

xk,

and to rewrite the resulting sums using the representation

(2.12)

[

r
r − k

]

=
k−1
∑

i=0

(

r

2k − i

)

Ck,i

for some integers Ck,i.

The first goal of this paper is to present the following generalization of Theorem
2.2.

Theorem 2.3. The 2-adic valuation of Al,m satisfies

ν2(Al,m) = ν2((m+ 1 − l)2l) + l,(2.13)

where (a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1) is the Pochhammer symbol.

Proof. We present two different proofs.

First proof. Define the numbers

Bl,m :=
Al,m

2l(m+ 1 − l)2l
.(2.14)

We need to prove that Bl,m is odd. The WZ-method [10] shows that the numbers
bl,m satisfy the recurrence

bl+1,m =
2m+ 1

l + 1
bl,m −

(m+ l)(m+ 1 − l)

l(l + 1)
bl−1,m,(2.15)

and the relation

Bl,m =
l!m! (m− l)!

2m (m+ l)!
bl,m(2.16)

implies that

Bl−1,m = (2m+ 1)Bl,m − (m− l)(m+ l + 1)Bl+1,m, 1 ≤ l ≤ m− 1.

The initial values Bm,m = 1 and Bm−1,m = 2m+1 show that Bl,m is an odd integer
as required.

Second proof. We have

ν2 (Al,m) = l + ν2

(

m
∑

k=l

Tm,k
(m+ k)!

(m− k)! (k − l)!

)

,(2.17)

where

(2.18) Tm,k =
(2m− 2k)!

2m−k (m− k)!
.
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The identity

(2.19) Tm,k =
(2(m− k))!

2m−k (m− k)!
= (2m− 2k − 1)(2m− 2k − 3) · · · 3 · 1

shows that Tm,k is an odd integer. Then (2.17) can be written as

ν2(Al,m) = l + ν2

(

m−l
∑

k=0

Tm,l+k
(m+ k + l)!

(m− k − l)! k!

)

= l + ν2

(

m−l
∑

k=0

Tm,l+k
(m− k − l + 1)2k+2l

k!

)

.

The term corresponding to k = 0 is singled out as we write

ν2(Al,m) = l + ν2

(

Tm,l(m− l + 1)2l +

m−l
∑

k=1

Tm,l+k
(m− k − l+ 1)2k+2l

k!

)

.

The claim

ν2

(

(m− k − l + 1)2k+2l

k!

)

> ν2((m− l + 1)2l)(2.20)

will complete the proof.
To prove (2.20) we use the identity

(m− k − l + 1)2k+2l

k!
= (m− l + 1)2l ·

(m− l − k + 1)k (m+ l + 1)k

k!

and the fact that the product of k consecutive numbers is always divisible by k!.
This follows from the identity

(2.21)
(a)k

k!
=

(

a+ k − 1

k

)

.

Now if m+ l is odd,

(2.22) ν2

(

(m− l − k + 1)k

k!

)

≥ 0 and ν2((m+ l+ 1)k) > 0,

and if m+ l is even

(2.23) ν2

(

(m+ l + 1)k

k!

)

≥ 0 and ν2((m− l − k + 1)k) > 0.

This proves (2.20) and establishes the theorem. �

Corollary 2.4. The 2-adic valuation of Al,m is given by

ν2(Al,m) = 3l − s2(m+ l) + s2(m− l).(2.24)

Proof. This follows directly from (2.13) and Legendre’s result (2.4). �
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3. Properties of the function ν2(Al,m)

In this section we describe properties of the function ν2(Al,m) for l fixed and
m ≥ l. In particular, we show that each of these sequences has a block structure.
The initial value

bl,l = 2l

(

2l

l

)

(3.1)

yields

Al,l = 2l(2l)!,

so that

ν2(Al,l) = l + ν2((2l)!) = l + (2l − s2(2l))

= 3l − s2(l).

This is consistent with Corollary 2.4.

The next element in the sequence is given by

Al,l+1 =
1

2
l! (l+ 1)!bl,l+1,(3.2)

and (1.4) yields

Al,l+1 = (2l + 3)(2l+ 1)Al,l.(3.3)

Therefore,

ν2(Al,l+1) = ν2(Al,l).(3.4)

This is again consistent with Corollary 2.4 in view of

s2(2l + 1) = s2(2l) + 1 = s2(l) + 1.(3.5)

We generalize (3.4) in the following theorem.

Theorem 3.1. Let l ∈ N be fixed. Then for m ≥ l, we have

ν2(Al,m+1) − ν2(Al,m) = ν2(m+ l + 1) − ν2(m− l + 1).(3.6)

Proof. The expression of Corollary 2.4 yields

ν2(Al,m+1) − ν2(Al,m) = ψ(m+ l) − ψ(m− l),(3.7)

where ψ(n) := s2(n) − s2(n + 1). We now show that ψ(n) = ν2(n + 1) − 1, to
complete the proof. To prove this, assume that the binary representation of n
begins with N consecutive ones; that is,

n = n0 + n12 + n22
2 + · · · + nN−12

N−1 + 0 · 2N + nN+12
N+1 + · · · + nr2

r,

where n0 = n1 = · · · = nN−1 = 1. Then

n+ 1 = 2N +

r
∑

j=N+1

nj2
j(3.8)

is the binary representation of n+ 1. Therefore, N = ν2(n+ 1) and

s2(n) = N +

r
∑

j=N+1

nji, s2(n+ 1) = 1 +

r
∑

j=N+1

nj,
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giving the result.

A second proof uses Legendre’s formula (2.4). We have

ν2(m) = ν2(m!/(m− 1)!)

= ν2(m!) − ν2((m− 1)!)

= m− s2(m) − (m− 1 − s2(m− 1))

= s2(m− 1) − s2(m) + 1,

as claimed. �

The fact that ν2(Al,l) = ν2(Al,l+1) is a special case of Theorem 3.1:

ν2(Al,l+1) − ν2(Al,l) = ν2(2l+ 1) − ν2(1) = 0.(3.9)

The value ν2(Al,l+2) can be obtained from

ν2(Al,m+2) − ν2(Al,m) = ν2(Al,m+2) − ν2(Al,m+1)

+ ν2(Al,m+1) − ν2(Al,m)

= ν2(m+ l + 2) − ν2(m− l + 2)

+ ν2(m+ l + 1) − ν2(m− l + 1),

and with m = l, we get

ν2(Al,l+2) − ν2(Al,l) = ν2(2l+ 2) − ν2(2) + ν2(2l+ 1) − ν2(1)

= ν2(l + 1).

Thus the jump of the function ν2(Al,l+2) from the initial value ν2(Al,l) depends on
the index l. If l is even, we have

ν2(Al,l+2) = ν2(Al,l+1) = ν2(Al,l).

The reader will easily check that, in this case, ν2(Al,l+3) also has this value. There-
fore, for l even, the function ν2(Al,m) begins with an interval of length 4 on which
it is constant.

The first few values of ν2(A1,m) are given by

(3.10) ν2(A1,m) = {2, 2, 3, 3, 2, 2, 4, 4, 2, 2, · · · }.

We observe that this sequence is 2-simple. Formula (2.9) can be used to prove this
property. Indeed, for m odd, we have

ν2(A1,m) = ν2(2m(m+ 1)) = 1 + ν2(m+ 1)

and

ν2(A1,m+1) = ν2(2(m+ 1)(m+ 2)) = 1 + ν2(m+ 1).

We have a similar block structure for l ≥ 2.

Theorem 3.2. The set {ν2(Al,m) : m ≥ l} is an s-simple sequence with s = 21+ν2(l).



12 TEWODROS AMDEBERHAN, DANTE MANNA, AND VICTOR H. MOLL

Proof. For fixed k, l ∈ N, define the sets of 2µ integers

Ck,l = {l + k · 2µ + j : 0 ≤ j ≤ 2µ − 1 },(3.11)

where µ = 1 + ν2(l). For example, if l is odd, then µ = 1 and

Ck,l = {l + 2k + j : 0 ≤ j ≤ 1 } = {l + 2k, l + 2k + 1}.

It follows that

{m ∈ N : m ≥ l } =
⋃

k≥0

Ck,l;(3.12)

that is, the Ck,l partition the integers m ≥ l. We claim that the function ν2(Al,m)
is constant on each Ck,l and that the constant differs from Ck,l to Ck+1,l. We start
with the case ν2(l) = 0. Then Ck,l = {l+ 2k, l+ 2k+ 1}, and we use (3.6) to show
that

ν2(Al,l+2k+1) − ν2(Al,l+2k) = ν2(l + 2k + l + 1) − ν2(l + 2k − l + 1)

= ν2(2l + 2k + 1) − ν2(2k + 1) = 0,

and

ν2(Al,l+2k+2) − ν2(Al,l+2k+1) = ν2(2l + 2k + 2) − ν2(2k + 2)

= ν2(l + k + 1) − ν2(k + 1) 6= 0

because the numbers l + k + 1 and k + 1 have different parity.

The case ν2(l) = 1 illustrates the general argument. Now the sets are

(3.13) Ck,l = {l+ 4k, l + 4k + 1, l + 4k + 2, l + 4k + 3},

and the jumps are evaluated as

jumpj := ν2(2l + 4k + j + 1) − ν2(4k + j + 1)(3.14)

for 0 ≤ j ≤ 2. In the case j even, then clearly jumpj = 0. If j is odd, namely j = 1,
we write j = 2j1 + 1 and

jumpj = ν2(2l + 4k + 2j1 + 2) − ν2(4k + 2j1 + 2)

= ν2(l + 2k + j1 + 1) − ν2(2k + j1 + 1)

= ν2(l + 2k + 1) − ν2(2k + 1),

and this vanishes again. The jump between different the last element of Ck,l and
the first one of Ck+1,l is given by the value j = 3 in (3.14); we have

(3.15) ν2(2l + 4k + 4) − ν2(4k + 4) = ν2(l/2 + k + 1) − ν2(k + 1) 6= 0

since the numbers l/2 + k + 1 and k + 1 differ by the odd value l/2.

We now consider the general case. The jump is given by

jumpj = ν2(2l + k · 2µ + j + 1) − ν2(k · 2
µ + j + 1),

where 0 ≤ j ≤ 2µ − 2. We need to check that jumpj = 0 for 0 ≤ j ≤ 2µ − 2 and
jumpj 6= 0 for j = 2µ − 1. The vanishing of jumpj is clear if j is even because

µ = 1 + ν2(l) ≥ 1. In the case j odd, we write j = 2j1 + 1 with 0 ≤ j1 ≤ 2µ−1 − 2.
Then

jumpj = ν2(l + k · 2µ−1 + j1 + 1) − ν2(k · 2
µ−1 + j1 + 1).
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This process can be repeated to obtain

jumpj = ν2(l2
−α + k · 2µ−1−α + j1+α + 1) − ν2(k · 2

µ−1−α + j1+α + 1),

for 0 ≤ j1+α ≤ 2µ−1−α − 2. The final step corresponds to α = µ − 2 = ν2(l) − 1.
Then the range of j reduces to the single value j = 0 and we have that

jumpj = ν2(2l2
−ν2(l) + 2k + 1) − ν2(2k + 1),

which vanishes because both terms on the right hand side are 2-adic valuations of
odd integers.

In order to check that jump2µ−1 6= 0, we write l = 2µ−1L, with L odd. Then

jump2µ−1 = ν2(2l + 2µk + 2µ) − ν2(2
µk + 2µ)

= ν2(2
µL+ 2µk + 2µ) − ν2(2

µk + 2µ)

= ν2(L+ k + 1) − ν2(k + 1) 6= 0,

because L+ k + 1 and k + 1 differ by an odd integer. �

4. The algorithm and its combinatorial interpretation

The graphs of the function ν2(Al,m), where we take every other 21+ν2(l)-element
to reduce the repeating blocks to a single value, are shown in the next figures. The
main experimental result is that these graphs have an initial segment from which
the rest is determined by adding a central piece followed by a folding rule. For
example, in the case l = 1, the first few values of the reduced table are

{2, 3, 2, 4, 2, 3, 2, 5, 2, 3, . . .}.

5 10 15 20 25 30

3

4

5

6

Figure 8. The 2-adic valuation of A1,m

The ingredients are:

initial segment: {2, 3, 2},

central piece: the value at the center of the initial segment, namely 3.
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rules of formation: start with the initial segment and add 1 to the central piece
and reflect.

This produces the sequence

{2, 3, 2} → {2, 3, 2, 4} → {2, 3, 2, 4, 2, 3, 2}→ {2, 3, 2, 4, 2, 3, 2, 5}→

→ {2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2}.

The details are shown in Figure 8.

At the moment, there is no way to predict the initial segment nor the central
piece. Figure 9 shows the beginning of the case l = 9. From here one could be
tempted to predict that this graph extends as in the case l = 1. This is not correct,
as can be seen in Figure 10. The new pattern described seems to be the correct
one, as shown in Figure 11.

2 3 4 5 6 7

25.5

26

26.5

27

Figure 9. The beginning for l = 9

The initial pattern can be quite elaborate. Figure 12 illustrates the case l = 53.

The proof of the Theorem 1.6 requires some preliminaries.

A) Given the values of Ω1(l) for 2j ≤ l ≤ 2j+1 − 1, the list for 2j+1 ≤ l ≤ 2j+2 − 1
is formed according to the following rule:

l is even: add 1 to the first part of Ω1(l/2) to obtain Ω1(l);

l is odd: prepend a 1 to Ω1

(

l−1
2

)

to obtain Ω1(l).

This is clear: if x1x2 · · ·xt is the binary representation of l, then x1x2 · · ·xt0 is
the one for 2l. Thus, the first part of Ω1(2l) is increased by 1, due to the extra 0
on the right. The relative position of the remaining 1s stays the same. A similar
argument takes care of Ω1(2l + 1). The extra 1 that is placed at the end of the
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5 10 15 20

26

27

28

29

Figure 10. The continuation of l = 9

10 20 30 40 50

26

27

28

29

30

Figure 11. The pattern for l = 9 persists

binary representation gives the first 1 in Ω1(2l + 1).

B) We now relate the 2-adic valuation of A2l,m and A2l+1,m to that of Al,m.

Proposition 4.1. Let l ∈ N. Then

ν2 (A2l,m) = 3l + ν2

(

Al,bm
2
c

)

,(4.1)

ν2 (A2l+1,m) = 3l + 2 + ν2 (N − l) + ν2 (Al,N ) ,(4.2)

with N = b(m+ 1)/2c.
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10 20 30 40 50 60 70

156

157

158

159

160

161

Figure 12. The initial pattern for l = 53

Proof. Theorem 2.3 gives

ν2(A2l,2m) = ν2((2m− 2l+ 1)4l) + 2l

= ν2((2m− 2l+ 1)(2m− 2l + 2) · · · (2m+ 2l − 1)(2m+ 2l)) + 2l

= ν2(2
2l(m− l + 1)(m− l + 2) · · · (m+ l)) + 2l

= 4l + ν2((m− l + 1)2l)

= 3l + ν2(Al,m).

A similar argument deals with ν2(A2l,2m+1) and (4.2). �

This proposition can be restated as follows.

Proposition 4.2. Let

(4.3) λl =
1 − (−1)l

2
, M0 = b

m+ λl

2
c.

Then

(4.4) ν2(Al,m) = 2l− bl/2c+ λlν2(M0 − bl/2c) + ν2(Abl/2c,M0
).

Corollary 4.3. The 2-adic valuation of Al,m satisfies

(4.5) ν2(Al,m) = 3l− s2(l) +
∑

k≥0

λbl/2kc ν2(Mk − bl/2k+1c);

where

(4.6) Mk = b
m+ λl + 2λbl/2c + · · · + 2kλbl/2kc

21+k
c = b

m+
∑k

n=0 2nλbl/2nc

21+k
c.

Proof. This is a repeated application of Proposition 4.2. The first term results from
∑

k≥0

(

2b
l

2k
c − b

l

2k+1
c

)

= 2l +
∑

k≥1

b
l

2k
c

= 2l + ν2(l!)

= 3l − s2(l),
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in view of (2.4). �

Corollary 4.4. The reduced constant is 3l − s2(l) = ν2(Al,l).

Proof. In the previous corollary, subtract the last term as per the reduction algo-
rithm. �

We now restate Theorem 1.6.

Theorem 4.5. Let {k1, · · · , kn : 0 ≤ k1 < k2 < · · · < kn}, be the unique collection
of distinct positive integers such that

(4.7) l =

n
∑

i=1

2ki .

Then the reduction sequence of l is {k1 + 1, k2 − k1, · · · , kn − kn−1}.

Proof. The argument of the proof is to check that the rules of formation for Ω1(l)
also hold for the reduction sequence Ω(l).

For l = 1, the block length is 2. This follows from Theorem 2.2, which states
that

ν2(A1,2m−1) = ν2(A1,2m) = 1 + ν2(m).

After we extract every other term and subtract {ν2(m) : m ≥ 1}, we obtain a
constant sequence. Thus the algorithm terminates and the reduction sequence for
l = 1 is Ω(1) = {1}.

The identity (4.1) in Proposition 4.1 shows that the sequence {ν2(A2l,m) : m ≥
2l} is obtained from {ν2(Al,m) : m ≥ l} by doubling the block length and adding
the constant 3l to each element of the sequence. The addition of this constant does
not affect the reduction sequence Ω(l), but the doubling of block length increases
the first term of Ω(l) by 1. Therefore

(4.8) Ω(2l) = {k1 + 1, k2 − k1, · · · , kn − kn−1}.

This is precisely what happens to the binary digits of l: if

l =

n
∑

i=1

2ki , then 2l =

n
∑

i=1

2ki+1.

This concludes the argument for even indices.
Since 2l+ 1 is odd, then the first term of the reduction sequence Ω(2l + 1) is 1.

The identity (4.2) in Proposition 4.1 states that

ν2 (A2l+1,m) = 3l + 1 + ν2(N − l) + ν2(Al,N ),

with N = b(m+ 1)/2c. After we extract the relevant subsequence, we obtain

(4.9) {3l+ 1 + ν2(n) + ν2(Al,l+n) : n ≥ 1},

and subtracting the dyadic valuation of the integers leaves

(4.10) {3l+ 1 + ν2(Al,m) : m ≥ l + 1}.
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The first element of this sequence is ν2(Al,l+1). This is also ν2(Al,l), as shown in
(3.4). Therefore, after the first step of the algorithm we have

(4.11) {3l+ 1 + ν2(Al,m) : m ≥ l};

this is a constant translate of the sequence {ν2(Al,m) : m ≥ l}. We conclude that,
if the reduction sequence of l is

(4.12) {k1 + 1, k2 − k1, · · · , kn − kn−1},

then that of 2l + 1 is

(4.13) {1, k1 + 1, k2 − k1, · · · , kn − kn−1}.

This is precisely the behavior of Ω1. The proof is complete. �

Corollary 4.6. The set Ω(l) has cardinality

(4.14) s2(l) = the number of ones in the binary expansion of l.

Note. The function s2(l) has recently appeared in a different divisibility problem.
In these papers it is denoted by d(l). Lengyel [8] conjectured, and De Wannemacker
[11] proved, that the 2-adic valuation of the Stirling numbers of the second kind
S(n, k) is given by

(4.15) ν2(S(2n, k)) = s2(k) − 1.

The Stirling numbers are given by the identity

(4.16) xn =
n
∑

k=0

S(n, k)x(x − 1)(x− 2) · · · (x− k + 1)

and they count the number of ways to partition a set with n elements into exactly
k nonempty subsets. De Wannemacker [12] also established the inequality

(4.17) ν2(S(n, k)) ≥ s2(k) − s2(n), 0 ≤ k ≤ n.

The study of the 2-adic valuation of Stirling numbers suggests that

(4.18) ν2(S(2n + 1, k + 1)) = s2(k) − 1,

which is a companion of (4.15).

Remarks:

Write l in the binary form: l =
∑n

j=1 2kj with 0 ≤ k1 < · · · < kn. Then, for the

Mk defined in (4.6) can be rewritten as

Mki
= b

m+
∑i

j=1 2kj

21+ki
c.

1. In light of this, Corollary 4.3 may be given in the form

(4.19) ν2(Al,m) = 3l− s2(l) +
∑

i≥1

ν2
(

Mki
− bl/21+kic

)

.

2. ν2(Mki
− bl/21+kic) is a 21+ki-simple sequence, i.e. of period 21+ki .
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3. ν2(Al,m) inherits its 21+k1-simple structure from ν2(Mk1
− bl/21+k1c); the term

with the lowest period (or highest frequency) in the decomposition (4.19). Notice
that this is consistent with Theorem 3.2, since k1 = ν2(l).

4. The sequence (. . . , λbl/2c, λl) is the binary code for l, and (. . . , k2 +1, k1 +1) are
the exponents of 2 in the binary format for 2l.

5. If we set k0 := 0, we could reconstruct the sequence ν2(Al,m) by reverse engi-
neering. Write the binary code for 2l =

∑n
j=1 21+kj , and then, starting with the ∞-

simple (constant) sequence 3l−s2(l), then add the 21+k1−, 21+k2−, . . . , 21+kn−simple
sequences ν2(Mki

−bl/21+kic). Here, the successive differences (1+kj)−(1+kj−1) =
kj − kj−1, for j = 1 = 1, . . . , n, encode the period switching-gaps (or indices of se-
quence shifting as compared to the preceding stages) on the one hand, and the
integer composition of 2l on the other. This clearly confirms the bijective relation-
ship between Ω(l) and Ω1(l) that has been proven in Theorem 1.6.

5. Generating functions

In this section we list generating functions to describe existing interconnections
between s2(m) and the 2-adic valuation of Al,m and also some miscellaneous con-
cepts.

Lemma 5.1. The generating function of ν2(m) is

(5.1)

∞
∑

m=1

ν2(m)xm =

∞
∑

k=1

x2k

1 − x2k
.

Proof. The right hand side is
∞
∑

k=1

x2k

1 − x2k
=

∞
∑

k=1

∞
∑

j=1

xj·2k

.

Now let m = j2k and observe that the sum in k runs over all the ν2(m) powers of
2, except 1, that divide m. �

Corollary 5.2. The generating function of ν2(m!) is

(5.2)

∞
∑

m=0

ν2(m!)xm =
1

1 − x

∞
∑

k=1

x2k

1 − x2k
.

Proof. This follows from ν2(m) = ν2(m!) − ν2((m− 1)!) and Lemma 5.1.
�

Note. The generating function of the numbers

(5.3) am := ν2(A1,m) − 1 = ν2(m(m+ 1)),

given in Theorem 2.2, can be expressed as

(5.4)
∑

m≥1

amx
m = (1 + x)

∑

k≥1

x2k−1

1 − x2k
.
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We have observed that the numbers am also appear in the well-known Collatz or
3x + 1 problem. Define a sequence by x0(m) = m and let xk+1(m) = T (xk(m)),
where

(5.5) T (i) =

{

1
2 i if i is even,
1
2 (3i+ 1) if i is odd.

The orbit of m ∈ N is the set

(5.6) O(m) := {m, T (m), T 2(m), . . .}.

The main conjecture for this problem is that every orbit ends in the cycle 1 → 2 → 1.
The reader will find in [5] an introduction to this problem and [3, 6] contain ano-
tated bibliographies.

The connection with our work is given in the next theorem.

Theorem 5.3. Let m ∈ N. Then am := ν1(A1,m) − 1 = ν2(m(m + 1)) is the first
time at which the orbit O(m) changes parity. That is,

(5.7) m ≡ T (m) ≡ T 2(m) ≡ · · · ≡ T am−1(m) 6≡ T am(m) mod 2.

Proof. Suppose m is odd and write it as m = 2jn− 1, with n odd. Then

(5.8) j = ν2(m+ 1) and n =
m+ 1

2j

are uniquely defined. Observe that

T (m) = T (2jn− 1) = 3 · 2j−1n− 1

and for i < j,

T i(m) = T i(2jn− 1) = 3i · 2j−in− 1.

Finally,

T j(m) = T j(2jn− 1) = 3jn− 1.

To complete the proof, observe that

(5.9) j = ν2(m+ 1) = ν2(m(m+ 1)) = N.

In the case m is even, write m = 2tm0, with m0 odd. Then

(5.10) T i(m) = 2t−im0, for 0 ≤ i < t

and

(5.11) T t(m) = m0.

The proof is completed by noticing that

(5.12) t = ν2(m) = ν2(m(m+ 1)) = N.

�

For example takem = 63. Then x1(63) = 95, x2(63) = 143, x3(63) = 215, x4(63) =
323, x5(63) = 485, and x6(63) = 728. Thus,

(5.13) O(63) = {63, 95, 143, 215, 323, 485, 728, . . .}.

It takes 6 iterations to produce an even entry. Observe that a63 = ν2((63)2) = 6.

Similarly, we have
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Proposition 5.4. The first time the orbit of 3m − 1 changes parity is after

ν2(3
m(3m − 1)) = ν2(3

m − 1) = λm + ν2(2m) = ν2(2
1+λmm)

iterations.

Proof. Use the binomial theorem for (2 + 1)m − 1, while the generating function
can be given by

(5.14)
∑

m≥1

ν2(3
m − 1)xm =

x2

1 − x2
+
∑

k≥0

x2k

1 − x2k
.

�

Lemma 5.5. The generating function of s2(m) is

(5.15)

∞
∑

m=0

s2(m)xm =
1

1 − x

∞
∑

k=0

x2k

1 + x2k
.

Proof. Legendre’s identity (2.4) yields

(5.16) s2(m) − s2(m− 1) = 1 − ν2(m).

It follows that

(5.17)

∞
∑

m=1

s2(m) −

∞
∑

m=1

s2(m− 1)xm =

∞
∑

m=1

xm −

∞
∑

m=1

ν2(m)xm.

The identity

(5.18)

∞
∑

m=0

x2m

1 − x2m+1
=

x

1 − x

is equivalent to the fact that every positive integer n is of the form k · 2i, with k
odd. Using this in (5.17) produces (5.15). �

Lemma 5.6. Let Nl = 1 + blog2 lc. Then
∞
∑

m=l

(s2(m− l) − s2(m+ l))xm−l =
x2l − 1

1 − x

∞
∑

k=Nl

x2k−2l

1 + x2k

=
2 sinh(l lnx)

1 − x

∞
∑

k=Nl

x2k−2l

1 + x2k
.

Proof. Simple application of Lemma 5.5. �

From this we obtain

Theorem 5.7. The generating function of the sequence ν2(Al,m) is given by

∞
∑

m=l

ν2(Al,m)xm−l =
3l

1 − x
+
x2l − 1

1 − x

∞
∑

k=Nl

x2k−2l

1 + x2k

=
1

1 − x

[

3l+ 2 sinh(l lnx)

∞
∑

k=Nl

x2k−2l

1 + x2k

]

.
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Proof. The expression given here follows by elementary manipulations on the iden-
tity

(5.19) ν2(Al,m) = 3l− s2(m+ l) + s2(m− l)

given in Corollary 2.4. �
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