
AN INTEGRAL WITH THREE PARAMETERS

GEORGE BOROS AND VICTOR H. MOLL

Abstract. In this paper we give an exact expression for the integral

I(a, b; r) =

Z

∞

0

„

x2

x4 + 2ax2 + 1

«r

·

x2 + 1

xb + 1
·

dx

x2

in terms of Euler’s beta function. Several classical integrals are deduced
from it. The expression for I(a, b; r) provides a method for unifying a
large class of integrals.

Note. This paper appeared in SIAM Review, 40, 1998, 972 − 980.

1. Introduction

In this paper we present a closed form evaluation of the integral

I(a, b; r) :=

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r

· x
2 + 1

xb + 1
· dx
x2
.

This master formula is used to evaluate a large number of definite integrals.
Some of these are well-known, by which we mean that they can be computed
by a symbolic language or can be found in a table of integrals. We have used
Mathematica 3.0 and Maple V as sources for the former and Gradshteyn and
Ryzhik [3] for the latter. We point out that we only tried the most naive
method of symbolic evaluation, so when we claim that a certain integral
cannot be evaluated by one of these languages, we mean that the integral
cannot be evaluated as stated. The variety of definite integrals that can
be deduced from (1.1) is immense, and a systematic classification would
be desirable. In this paper we have chosen to examine a selection of these
integrals that can be expressed in terms of elementary functions and the
gamma function and its derivatives. For instance, in (5.4) we show that

∫

∞

0

[

(x2 + 1) 3
√

x(x2 + 1)2
]

−1

× ln

(

x

x2 + 1

)

dx =

[

−1

2
Γ

(

1

3

)]3

.

We consider this to be one of our most interesting results.
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As a consequence of our expression for (1.1) we derive a formula of Liou-
ville [5]:

∫

∞

0

[

(ax+ b/x)2 + c
]

−p−1

dx =

√
π Γ(p+ 1/2)

2acp+1/2 Γ(p+ 1)
.

This expression is correct only for b < 0, and we provide the correct result
for b > 0 in Section 2. This formula has been misquoted in several tables of
integrals (see for example [3] 3.257).

In Section 2 we evaluate (1.1). Examples involving specific choices of
the parameters are presented in Section 3. In Section 4 we give additional
examples obtained by differentiation with respect to the parameter r. The
last two sections contain a discussion of the case a = 1.

2. Derivation of the master formula

Conditions on the parameters a, b and r that guarantee convergence of
the integral I(a, b; r) defined in (1.1) will always be assumed; these are the

only restrictions on the parameters. In particular, a > −1 and r > 1
2

are
sufficient, but r is not required to be an integer.

We show first that the integral I is independent of b:

Lemma 2.1. Suppose f satisfies the functional equation f(1/x) = x2f(x).
Then

∫

∞

0
f(x)/(xb + 1) dx is independent of b.

The proof follows easily from differentiation with respect to b and the change
of variable x→ 1/x.

The lemma applies to (1.1), so it suffices to evaluate I(a, b; r) for the special
case b = 2:

J(a; r) := I(a, 2; r) =

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r
dx

x2

=

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r

dx.

The last expression is obtained by the substitution x → 1/x. We conclude
that

J(a; r) =
1

2

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r

× x2 + 1

x2
dx.

We now make the substitution x = tan θ to rewrite J(a; r) in its trigono-
metric form:

J(a; r) = 2−r+1

∫ π

0

(

1 − cos θ

(3 + a) + (1 − a) cos θ

)r

· dθ

1 − cos θ
,
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where we have used the symmetry of cosine about θ = π. The change of
variable Φ = (1 − cos θ)/[(3 + a) + (1 − a) cos θ] then yields

J(a; r) = 2−1/2−r(1 + a)1/2−rB(r − 1/2, 1/2),

where

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1 dt

is Euler’s beta function. This proves:

Theorem 2.2. Let

I1 =

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r

· x
2 + 1

xb + 1
· dx
x2

I2 =

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r

· dx
x2

I3 =

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r

dx

I4 =
1

2

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r

· x
2 + 1

x2
dx.

Then I1 = I2 = I3 = I4 and each has the common value

I(a, b; r) = 2−1/2−r(1 + a)1/2−rB(r − 1/2, 1/2).

A simple scaling produces:

Corollary 2.3.
∫

∞

0

(

x2

bx4 + 2ax2 + c

)r

dx =
B(r − 1/2, 1/2)

2r+1/2
√
b
(

a+
√
bc

)r−1/2
,

where b > 0, c ≥ 0, a > −
√
bc and r > 1/2.

Note 1. Corollary 2.3 can be used to clarify [3] 3.257:

F :=

∫

∞

0

[

(ax+ b/x)2 + c
]

−p−1
dx =

√
π Γ(p+ 1/2)

2acp+1/2 Γ(p+ 1)
.(2.1)

The evaluation of this integral can be traced back to Liouville [5]. We may
assume a > 0. Then Corollary 2.3 produces

F =

∫

∞

0

(

x2

a2x4 + (2ab+ c)x2 + b2

)p+1

dx

=
B(p+ 1/2, 1/2)

2a [2a(b + |b|) + c]p+1/2
,

which is valid for p > −1/2 and 2a(b+ |b|) + c > 0. For b > 0 this yields

F =
B(p+ 1/2, 1/2)

2a [4ab+ c]p+1/2
,
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where c > −4ab, and for b < 0 it yields

F =
B(p+ 1/2, 1/2)

2acp+1/2
,

where c > 0. Thus (2.1) is correct only for b < 0.
Liouville considered only the case b < 0, but his method can also be

applied to b > 0. The integral I3 is written as
∫

∞

0

[

(x− 1/x)2 + 2(a+ 1)
]

−r
dx(2.2)

=
1

2

∫

∞

0

[

(x− 1/x)2 + 2(a+ 1)
]

−r ×
(

1 + 1/x2
)

dx,(2.3)

where (2.3) is produced by averaging (2.2) with the integral obtained by the
substitution x → 1/x. The expression in Theorem 1 follows directly from
here.

3. Special cases

We now compute examples of I(a, b; r) for specific choices of the param-
eters, some of which are well-known. We tried to compute each example
using both Maple V and Mathematica 3.0 on a SUN Ultra 1; in those cases
where an answer was thereby obtained, we indicate the amount of CPU time
taken. In several cases symbolic integration fail to give an answer.

Example 3.1: a = 1/2, r = 3 in I2:
∫

∞

0

x4 dx

(x4 + x2 + 1)3
=

π

48
√

3
.

Mathematica 3.0 computes this in 29.91 seconds.

Example 3.2: a = 7/2, r = 5/2 in I2:
∫

∞

0

x3 dx

(x4 + 7x2 + 1)5/2
=

2

243
.

In this case Mathematica gives the correct answer in 2.09 seconds, but Maple
V gives −17/1215, clearly incorrect; if we introduce the change of variable
x2 = u, Maple V does provide the correct answer.

Example 3.3: a = 7, r = 5/4 in I2:
∫

∞

0

√
x dx

(x4 + 14x2 + 1)5/4
=

Γ2(3/4)

4
√

2π
.

This could not be evaluated symbolically.
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Example 3.4: a = 1/2, r = 3/4 in I2:

∫

∞

0

dx√
x(x4 + x2 + 1)3/4

=
π3/2

Γ2(3/4) 4
√

12
.

This could not be done symbolically either.

Example 3.5: b = 102, a = (1 + 2
√

2)/2, r = 1 in I1:
∫

∞

0

dx
[

x4 + (1 + 2
√

2)x2 + 1
]

[x100 − x98 + · · · + 1]
=

π

2(1 +
√

2)
.

Example 3.6: a = 1, r = 1 in I1 produces the evaluation of a well-known
integral:

∫

∞

0

dx

(x2 + 1)(xb + 1)
=
π

4

(see [2], page 262). This can be transformed via x = tan θ to the familiar
form

∫ π/2

0

dθ

1 + (tan θ)b
=
π

4
.

Example 3.7: a = 1 and arbitrary r in I3:

∫ π/2

0

sin2r−2 θ cos2r−2 θ dθ = 21−2rB(r − 1/2, 1/2)

after the change of variable x = tan θ. The substitution 2θ = ν yields Wallis’
integral:

∫ π/2

0

sinδ νd ν =
1

2
B

(

δ + 1

2
,
1

2

)

,

where δ := 2r − 2 > −1 (see [2], page 54).

4. Differentiation results

The function

I(a, b; r) =

∫

∞

0

(

x2

x4 + 2ax2 + 1

)r

· x
2 + 1

xb + 1
· dx
x2

= 2−1/2−r(1 + a)1/2−r ×B(r − 1/2, 1/2)(4.1)

may be differentiated with respect to each of the independent variables a, b
and r. Consistent with Lemma 1, ∂I/∂b is zero, and ∂I/∂a produces an
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equivalent form of (4.1). One can, however, obtain additional results by
differentiation with respect to r. For example, with a = −1/2 in I2, we have

∫

∞

0

(

x2

x4 − x2 + 1

)r

· dx
x2

=

√
π

2
Γ(r − 1/2)/Γ(r).(4.2)

Differentiation of (4.2) produces
∫

∞

0

(

x2

x4 − x2 + 1

)r

× ln

(

x2

x4 − x2 + 1

)

dx

x2
=

√
π

2
× Γ(r)Γ′(r − 1/2) − Γ(r − 1/2)Γ′(r)

Γ2(r)
.

(4.3)

Several interesting integrals can now be evaluated by specifying a value of
the parameter r. Such calculations produce nice results in terms of well-
known constants provided we know the values of the function Γ and its
derivatives at the arguments r and r − 1/2.

Example 4.1. r = 1 in (4.3):
∫

∞

0

(

1

x4 − x2 + 1

)

× ln

(

x2

x4 − x2 + 1

)

dx =

√
π

2

Γ(1)Γ′(1/2) − Γ(1/2)Γ′(1)

Γ2(1)

= −π ln 2.

In this calculation we have used the values Γ′(1) = −γ and Γ′(1/2) =
−√

π(γ + 2 ln 2). Here γ is Euler’s constant. This cannot be evaluated
symbolically.

Example 4.2. r = 3/2 n (4.3):
∫

∞

0

x

(x4 − x2 + 1)3/2
× ln

(

x2

x4 − x2 + 1

)

dx = 2(ln 2 − 1).

A direct Mathematica evaluation yields divergent integral. The same calcu-
lation adapted to the range 0 ≤ x ≤ 1 produces the correct answer in 2.75
seconds.

Example 4.3. r = 3/4 in (4.3):
∫

∞

0

(

x2

x4 − x2 + 1

)3/4

× ln

(

x2

x4 − x2 + 1

)

dx = −
√
π

2
√

2
Γ2(1/4).

We could not evaluate this example symbolically even after transforming
the problem to 0 ≤ x ≤ 1.

Note 2. Further differentiation of (4.2) produces more examples of integrals
that can be evaluated in closed form. These calculations are now given in
terms of the values of Γ, Γ′ and Γ′′ at the arguments r and r − 1/2. For
example, r = 1 yields

∫

∞

0

1

(x4 − x2 + 1)
× ln2

(

x2

x4 − x2 + 1

)

dx =
π

2

(

π2

3
+ 4 ln2 2

)

.
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5. The case a = 1

In this section we discuss in detail the case a = 1. Theorem 1 with I2
yields

∫

∞

0

(

x

x2 + 1

)2r dx

x2
= 2−2rB(r − 1/2, 1/2).

Let

G(r) :=
Γ(r − 1/2)

Γ(r)22r−1
=

21−2r

√
π
B(r − 1/2, 1/2).

Then
√
π

2
G(r) =

∫

∞

0

(

x

x2 + 1

)2r dx

x2
.

Differentiation produces
∫

∞

0

(

x

x2 + 1

)2r

ln

(

x

x2 + 1

)

dx

x2
=

√
π

4
G′(r),

=

√
π

4
G(r) [ψ(r − 1/2) − ψ(r) − 2 ln 2] .(5.1)

Here ψ(r) = Γ′(r)/Γ(r) is the logarithmic derivative of Γ(r).

In order to obtain explicit results, in addition to knowing the values of Γ
and Γ′ at the arguments r and r − 1/2, we also need to know the values of
ψ and ψ′.

Example 5.1. Let r = 1. Then (5.1) yields
∫

∞

0

1

(x2 + 1)2
× ln

(

x

x2 + 1

)

dx = −π ln 2

2
,

where we have used the appropriate values of ψ to compute G′(1). This
cannot be evaluated using Mathematica. We now use [3] 4.234.6

∫

∞

0

lnx dx

(A2 +B2x2)(1 + x2)
=

πB

2A(B2 −A2)
ln

(

A

B

)

in the limiting case A→ 1, B → 1 to obtain
∫

∞

0

lnx dx

(x2 + 1)2
= −π

4
.

Combining this with the previous result gives
∫

∞

0

ln(x2 + 1) dx

(x2 + 1)2
=

π

4
(2 ln 2 − 1).

This can be evaluated in Mathematica in 1.37 seconds.
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Note 3. If we repeat the same procedure used to obtain (5.1) but use
Theorem 1 with I1 in lieu of I2, we obtain

∫

∞

0

(

x

x2 + 1

)2r

× ln

(

x

x2 + 1

)

× x2 + 1

x2(xb + 1)
dx =

√
π

4
G′(r).(5.2)

Example 5.2. r = 1 and b = 0 in (5.2):
∫

∞

0

(

1

x2 + 1

)

× ln

(

x

x2 + 1

)

dx =

√
π

2
G′(1) = −π ln 2.

Since
∫

∞

0

lnx

x2 + 1
dx = 0,

we thus get
∫

∞

0

ln(x2 + 1)

x2 + 1
dx = π ln 2.

This cannot be evaluated directly by Mathematica.

Note 4. Differentiation of (5.1) yields
∫

∞

0

(

x

x2 + 1

)2r

× ln2

(

x

x2 + 1

)

dx

x2
=

√
π

8
G′′(r)(5.3)

with

G′′(r) = G(r)
[

ψ′(r − 1/2) − ψ′(r) + (ψ(r − 1/2) − ψ(r) − 2 ln 2)2
]

.

As usual, certain values of r produce exact evaluations.

Example 5.3. r = 1 in (5.3):
∫

∞

0

1

(x2 + 1)2
× ln2

(

x

x2 + 1

)

dx =
π

48

(

π2 + 48 ln2 2
)

.

This cannot be evaluated in Mathematica.

We conclude this section with two examples that we find aesthetically pleas-
ing.

Example 5.4. r = 3/4 in (5.1):
∫

∞

0

[

(x2 + 1)
√

x(x2 + 1)
]

−1

× ln

(

x

x2 + 1

)

dx = − 1

8
√
π

(π + 2 ln 2) × Γ2

(

1

4

)

.

Example 5.5. r = 5/6 in (5.1):

(5.4)

∫

∞

0

[

(x2 + 1) 3
√

x(x2 + 1)2
]

−1

× ln

[

x

x2 + 1

]

dx =

(

−1

2
Γ

(

1

3

))3

.
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This example is reminiscent of [3] 4.244.1:
∫ 1

0

[

3
√

x(1 − x2)2
]

−1

× lnx dx =

(

−1

2
Γ

(

1

3

))3

.(5.5)

6. A final series of examples

Starting with the expression

G(r) =
Γ(r − 1/2)

Γ(r)22r−1
=

2√
π

∫

∞

0

(

x

x2 + 1

)2r

· dx
x2

and differentiating n times we obtain

(6.1)
∫

∞

0

(

x

x2 + 1

)2r

×
[

ln

(

x

x2 + 1

)]n

· dx
x2

=

√
π

2n+1

dn

drn

[

Γ(r − 1/2)

Γ(r)22r−1

]

.

In particular, for r = 3/2 and n = 3 we have
∫

∞

0

[(

x

x2 + 1

)

× ln

(

x

x2 + 1

)]3

· dx
x2

=
3

8
[ζ(3) + ζ(2) − 4] .

The substitution t = x/(x2 + 1) then gives

ζ(3) = 4 − ζ(2) +
8

3

∫ 1/2

0

t√
1 − 4t2

[ln t]3 dt.

Now, with r = 3/2 and n = 4 we get
∫

∞

0

(

x

x2 + 1

)3

×
[

ln

(

x

x2 + 1

)]4

· dx
x2

=
1

160

[

−3π4 − 80π2 + 1920 − 480ζ(3)
]

,

and in the answer we see a rational combination of the values of the Riemann
zeta function ζ(j) at j = 2, 3, and 4. Higher values of n produce similar
algebraic combinations of the values of ζ(j). The appearance of ζ(j) is due
to the expression for the Polygamma function

PolyGamma[n, z] =
dn+1

dzn+1
log Γ(z) = (−1)n+1n!

∞
∑

k=0

1

(z + k)n+1

and the special values at z = 1 and z = 3/2:

PolyGamma[j − 1, 1] = (−1)jn!ζ(j)

PolyGamma[j − 1, 3/2] = (−1)j(j − 1)!
[

(2j − 1)ζ(j) − 2j
]

.

One last example. Formula (6.1) can be used to produce many more exact
evaluations of definite integrals. For example, one can show that

∫

∞

0

(

x

x2 + 1

)2j+1

×
[

ln

(

x

x2 + 1

)]

· dx
x2

=
Hj −H2j − 1/2j

2j
(

2j
j

) .
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for any positive integer j and a similar formula for even exponents. Here

Hj = 1 +
1

2
+ · · · + 1

j

is the j-th partial sum of the harmonic series.

7. Conclusions

We have presented an elementary master formula for the closed form eval-
uation of an integral that depends upon three parameters. Many classical
examples can be evaluated within this framework by specifying the param-
eters or by differentiation with respect to them. In addition, we have been
able to evaluate a large number of other integrals which cannot be found
in standard tables and cannot be evaluated by standard symbolic software
packages.

Acknowledgments. The suggestions of the referee and the editor con-
cerning a preliminary version of this paper are gratefully acknowledged.
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8. Update. January 2009

This is a review of the statements from this paper.

1) The result in Theorem 2.2 has appeared as entry 3.242.11 of [1].
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2) Naturally the times have been reduced. Example 3.1 takes 5.89 and Ex-
ample 3.2 takes 0.194 seconds. The integrals in Examples 3.3 and 3.4 still
cannot be evaluated symbolically.

3) Mathematica 6.0 is now able to compute the integral in Example 4.1.
The same is true for Example 4.2.

4) Mathematica is unable to compute the integral in Example 4.3, nor the
one after Note 2.

5) Mathematica is now able to evaluate the integral in Example 5.1. The
same is true for the one in Example 5.2 and also the one in Example 5.3.

6) The integrals in Example 5.5 can be evaluated using Mathematica.
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