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1. INTRODUCTION. The method of completing squares yields an elemen-
tary procedure to evaluate

I =

∫

∞

−∞

dx

ax2 + bx + c
. (1)

Write

ax2 + bx + c = a

[

(

x +
b

2a

)2

+
4ac− b2

4a2

]

,

and use a linear change of variables to obtain
∫

∞

−∞

dx

ax2 + bx + c
=

2√
4ac − b2

∫

∞

−∞

dx

x2 + 1
=

2π√
4ac − b2

. (2)

Observe that 4ac− b2 > 0 is required for the convergence of (1).
The goal of this paper is to present a new proof of (2). We illustrate a

technique that will apply to any rational integrand. Providing new proofs of an
elementary result, such as (2), is usually an effective tool to introduce students
to more interesting Mathematics. The method discussed here has a rich history
that we describe in section 2.

It is an unfortunate fact that, despite our best efforts, evaluating definite
integrals is not very much in fashion today. Thus we rephrase the previous
evaluation as a question in dynamical systems: replace the parameters a, b, and
c in (1) with new ones given by the rules

an+1 = an

[

(an+3cn)2−3b2
n

(3an+cn)(an+3cn)−b2
n

]

, (3)

bn+1 = bn

[

3(an−cn)2−b2
n

(3an+cn)(an+3cn)−b2
n

]

,

cn+1 = cn

[

(3an+cn)2−3b2
n

(3an+cn)(an+3cn)−b2
n

]

,

with a0 = a, b0 = b, and c0 = c. The reader is asked to check that (1) is
invariant under (3), that is,

∫

∞

−∞

dx

an+1x2 + bn+1x + cn+1
=

∫

∞

−∞

dx

anx2 + bnx + cn
, (4)

and to prove that

lim
n→∞

an = lim
n→∞

cn =
1

2

√

4ac − b2, lim
n→∞

bn = 0. (5)
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Once this is done, we can pass to the limit in (4) and use the invariance of I to
obtain

I =
π

lim
n→∞

an
=

2π√
4ac − b2

. (6)

This leads directly to a proof of (2). The advantage of this method is that it
generalizes to integrands of higher degree.

We call (3) a rational Landen transformation. In section 2 we discuss the
historical precedent and motivation behind such transformations. This history
connects (6) to the magic of the arithmetic-geometric mean, π, and a wonderful
numerical calculation of Gauss.

The rest of the paper is devoted to a detailed proof of the Landen trans-
formation: the invariance of the rational integral (4) and the evaluation of the
limits in (5). A scaling of the integrand that is a crucial step in producing
this transformation is presented in section 3. The following section presents the
trigonometrical aspects of this problem and completes the proof of (4). An alge-
braic calculation shows that the discriminant of the quadratic in (1) is preserved;
that is,

4ac − b2 = 4a1c1 − b2
1. (7)

This invariance is used in section 5 to analyze the dynamics of (3) and to
establish (5).

2. LANDEN TRANSFORMATIONS. Many of the evaluations encoun-
tered in integral calculus illustrate the fact that definite integrals correspond
to special values of functions. For example, the last integral in (2) is given by
π = tan−1(∞)−tan−1(−∞). Other special values appear in elementary courses:

∫ 1

0

dx√
3 − x2

= sin−1

(

1√
3

)

. (8)

The same is true for more complicated integrals. For instance, when 0 <
b < a < 1,

G(a, b) :=

∫ π/2

0

dθ
√

a2 cos2 θ + b2 sin2 θ
=

1

a
K(k), (9)

with k2 = 1 − b2/a2. Here K is the complete elliptic integral of the first kind

defined by

K(k) =

∫ 1

0

dx
√

(1 − x2)(1 − k2x2)
. (10)

Elliptic integrals appear at the center of classical analysis. Their name comes
from the fact that they provide explicit formulas for the length of an ellipse.
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The inverse of

f(z) =

∫ z

0

dx
√

(1 − x2)(1 − k2x2)

is similar to sin z, so (8) and (10) are not so different after all. This new function
is the elliptic sine (or sinus amplitudinus) of Jacobi [15], denoted by sn z. It
completes the trilogy: sin z (circular), sinh z (hyperbolic), and sn z (elliptic).
The question of evaluating definite integrals sometimes comes down to how
many functions one knows.

Our complaint that students today are exposed only to the most basic of
functions is not new. Klein states [16, p. 294]: When I was a student, abelian

functions were, as an effect of the Jacobian tradition, considered the uncontested

summit of mathematics and each of us was ambitious to make progress in this

field. And now? The younger generation hardly knows abelian functions.1

Suppose that a and b are positive real numbers. It is not hard to check that
the sequences {an} and {bn} defined recursively by

an+1 =
an + bn

2
, bn+1 =

√

anbn, (11)

a0 = a, and b0 = b converge to a common limit: namely, the arithmetic-

geometric mean of a and b, denoted by AGM(a, b). This is a fascinating function;
the book [5] explains its connections with modern algorithms for the evaluation
of π. The reader will find in [1] a survey of maps similar to (11) and an extensive
bibliography.

At the turn of the eighteenth century, Gauss [13] was interested in lemnis-
cates and their lengths. After a numerical calculation, he observed that

1

AGM(1,
√

2)

and
2

π

∫ 1

0

dx√
1 − x4

agree to eleven decimal places. (The integral gives the length of a lemniscate.)
With remarkable insight, he discovered that the elliptic integral G(a, b) in (9)
remains invariant if the parameters (a, b) are replaced with their arithmetic and
geometric means; that is,

G(a, b) = G

(

a + b

2
,
√

ab

)

. (12)

Iterating, passing to the limit, and using the invariance of the elliptic integral
G yields

G(a, b) =
π

2 AGM(a, b)
. (13)

1The authors learned of this quote from the preface of [5].
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The convergence of the arithmetic-geometric mean iteration (11) is quadratic,
meaning that |an+1 − AGM(a, b)| ≤ C|an − AGM(a, b)|2 for some C > 0. Thus
(11) leads to a rapid evaluation of the elliptic integral G(a, b). This iteration
has been used for the numerical evaluation of elliptic integrals. See [7], [8], [9],
[10], or [11] for details. The algorithm described here could also be used for the
numerical evaluation of rational integrals.

It was a pleasant surprise when, in the process of analyzing definite integrals
of rational functions, we discovered that

U6 =

∫

∞

0

cx4 + dx2 + e

x6 + ax4 + bx2 + 1
dx

admits a similar invariant transformation. We call this a rational Landen trans-

formation. In the case of U6 the dynamical system (11) is replaced with

an+1 =
anbn + 5an + 5bn + 9

(an + bn + 2)4/3
, (14)

bn+1 =
an + bn + 6

(an + bn + 2)2/3
,

with similar rules for cn, dn, and en. The derivation of (14) appears in [2].
The sequence (an, bn) converges to (3, 3) precisely for those initial data

(a0, b0) for which the integral U6 is finite. Moreover, for the numerator pa-
rameters, we have (cn, dn, en) → (1, 2, 1)L, for some real L. The convergence
of this method is discussed in [2], [12], and [14]. The invariance of U6 yields the
identity

U6 =
π

2L

exactly as in (13). Observe that (6) is also of this type: an integral given as
the limit of an iterative process. Transformations similar to (14) have been
produced in [3] for any even rational integrand.

Until now all rational Landen transformations were restricted to even ratio-
nal functions. In this paper we present the simplest example of a technique that
we expect will extend to the general case (see [17] for details).

The identities (6) and (13) yield iterative methods to evaluate the corre-
sponding integrals. For example, the first four iterations of the evaluation of

I =

∫

∞

−∞

dx

4x2 + 3x + 1

using (3) are given in Table 1.
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Table 1.

n an bn cn

0 4 3 1
1 1.0731707317 0.6585365853 1.7317073171
2 1.3322738087 0.0186646386 1.31360991700
3 1.3228754233 4.644065 ×10−7 1.3228758877
4 1.3228756555 7.154295 ×10−21 1.3228756555

The example presented in the table exhibits cubic convergence, faster than
the convergence of the AGM. The exact value of I is 2π/

√
7, and (6) yields

lim
n→∞

an =
√

7/2. The reader can check that the value a4 gives
√

7/2 correct to

ten digits of accuracy.
At the end of the amazing numerical calculation that led him to establish

the invariance for the elliptic integral G(a, b), Gauss commented in his diary
that this will surely open up a whole new field of analysis. This statement
is certainly true. The reader will find in [5] a detailed discussion of how the
arithmetic-geometric mean plays a fundamental role in modern computations
of the digits of π. This technique has also been used in [4] to create new and
efficient methods to evaluate elementary functions.

Over the years many proofs of (12) have been discovered. A number of them
can be found in [18]. The authors are particularly fond of the succinct proof by
D. J. Newman [19]: use x = b tan θ and follow with x 7→ x +

√
x2 + ab. Change

of variables is an art.

3. THE QUADRATIC CASE. The goal of this section is to present the
algebraic techniques that produce the transformation (3). We scale the inte-
grand by multiplying both the numerator and denominator by an appropriate

polynomial. This scaling is one of the main ingredients in the formulation of the
Landen transformations. The other one will be discussed in the next section.

We are motivated by the identities

U(tan θ) = − sin(3θ)

cos3 θ
, V (tan θ) = −cos(3θ)

cos3 θ
,

where

U(x) = x3 − 3x , V (x) = 3x2 − 1.

The task is to find coefficients z0, z1, z2, z3, z4 and e0, e1, e2 such that

(ax2 + bx + c)(z0x
4 + z1x

3 + z2x
2 + z3x + z4) (15)

can be written as

e0U
2(x) + e1U(x)V (x) + e2V

2(x) (16)
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with unknown coefficients zi and ei that are functions of the original parameters
a, b, and c. There is so much freedom, it can’t be hard.

Matching (15) with (16) yields a system of seven equations for the eight
unknowns. We use the first five to solve for the coefficients zi in terms of a, b, c,
and the ei. To start, comparison of the constant term in (15) and (16) gives

z4 = c−1e2. (17)

Using this value, we find that the first-order coefficient z3 satisfies cz3 − 3e1 +
bc−1e2 = 0, which yields

z3 = c−2(3ce1 − be2). (18)

The next powers produce

z2 = c−3(9c2e0 − 3bce1 + b2e2 − ace2 − 6c2e2)

and

z1 = c−4(−9bc2e0 + 3b2ce1 − 3ac2e1 − 10c3e1 − b3e2 + 2abce2 + 6bc2e2),

respectively. Finally,

z0 = c−5(9b2c2e0 − 9ac3e0 − 6c4e0 − 3b3ce1 + 6abc2e1 + 10bc3e1 + b4e2

−3ab2ce2 + a2c2e2 − 6b2c2e2 + 6ac3e2 + 9c4e2).

This leaves the two equations that arise from the two highest powers, which
we use to find the parameters ei. We solve the x5 equation for e2 in terms of the
parameters a, b, c, e1, and e0. Substituting this information into the equation
for the leading term produces

b(b2 − 3(a − c)2)e0 = a(3b2 − (a + 3c)2)e1. (19)

The system has one degree of freedom, which we exploit to ensure that the
zi and ei are polynomials in the parameters a, b, and c. We initially choose
e0 = a((a+3c)2− 3b2), from which it follows that e1 = −b(b2− 3(a− c)2). This
in turn yields e2 = −c(3b2 − (3a + c)2).

The expressions for the coefficients zi reduce to the following:

z0 = (a + 3c)2 − 3b2

z1 = 8b(a− 3c)

z2 = −6a2 + 10b2 + 44ac− 6c2

z3 = 8b(c− 3a)

z4 = (3a + c)2 − 3b2

and, just to reiterate,

e0 = a((a + 3c)2 − 3b2)

e1 = b(3(a − c)2 − b2)

e2 = c((3a + c)2 − 3b2).
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In the latter formulas we already see a semblance of the iteration (3).

4. ENTER TRIGONOMETRY. In this section we complete the construc-
tion of the Landen transformation and establish the invariance of the integral (1)
under it. We establish the vanishing of a special class of integrals that appear
as intermediate steps in this construction.

We start with (1) and use the change of variables x = tan θ to produce

I =

∫ π/2

−π/2

dθ

a sin2 θ + b sin θ cos θ + c cos2 θ
. (20)

The identities

tan3 θ − 3 tan θ = − sin(3θ)

cos3 θ
, 3 tan2 θ − 1 = −cos(3θ)

cos3 θ

that were the reason behind the choices for U and V are then used to obtain

I =

4
∑

k=0

z4−k

∫ π/2

−π/2

sink θ cos4−k θ dθ

e0 sin2(3θ) + e1 sin(3θ) cos(3θ) + e2 cos2(3θ)
(21)

from the integral (1) after it has been scaled according to the procedure de-
scribed in section 3.

The elementary identities

cos4 θ = 1
8 cos(4θ) + 1

2 cos(2θ) + 3
8 (22)

cos3 θ sin θ = 1
8 sin(4θ) + 1

4 sin(2θ)

cos2 θ sin2 θ = 1
8 − 1

8 cos(4θ)

cos θ sin3 θ = 1
4 sin(2θ) − 1

8 sin(4θ)

sin4 θ = 1
8 cos(4θ) − 1

2 cos(2θ) + 3
8

transform the expression for I to a linear combination of

Sk =

∫ π/2

−π/2

sin(kθ) dθ

e0 sin2(3θ) + e1 sin(3θ) cos(3θ) + e2 cos2(3θ)
(k = 2, 4)

and

Ck =

∫ π/2

−π/2

cos(kθ) dθ

e0 sin2(3θ) + e1 sin(3θ) cos(3θ) + e2 cos2(3θ)
(k = 0, 2, 4)

The magic of the Landen transformations comes from the vanishing of many
of these integrals. This reduces (21) to an integral of the type (20) with new
coefficients, resulting in the transformation rule (3). Indeed, for even k the
integrals Sk and Ck vanish if k is not a multiple of 3. To verify this, replace θ with
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u = θ + π in the definition of Sk. Using sin(k[u− π]) = (−1)k sin(ku) = sin(ku)
and cos(k[u − π]) = (−1)k cos(ku) = cos(ku), we arrive at

Sk =

∫ 3π/2

π/2

sin(ku) du

e0 sin2(3u) + e1 sin(3u) cos(3u) + e2 cos2(3u)
.

Adding this to the original Sk and taking advantage of the periodicity of the
integrand we get

Sk =
1

2

∫ 2π

0

sin(ku) du

e0 sin2(3u) + e1 sin(3u) cos(3u) + e2 cos2(3u)
.

Now, we observe that both sin(3u) and cos(3u) are invariant under shifts by
2π/3 and 4π/3, so

6Sk =

∫ 2π

0

sin(ku) + sin(ku − 2πk/3) + sin(ku − 4πk/3)

e0 sin2(3u) + e1 sin(3u) cos(3u) + e2 cos2(3u)
du.

The numerator in the integrand is the imaginary part of

eiku + ei(ku−2πk/3) + ei(ku−4πk/3) = eiku
(

1 + e−2πki/3 + e−4πki/3
)

,

and the last sum is 3 or 0 depending on whether 3 divides k or not.

We conclude that the only terms that contribute to (21) are the constants
in (22). Therefore

I =
1

16

∫ 2π

0

3z4 + z2 + 3z0

e0 sin2(3u) + e1 sin(3u) cos(3u) + e2 cos2(3u)
du,

where we have again appealed to periodicity to extend the integral to [0, 2π].
The change of variables θ = 3u leads to

I =
1

8

∫ π/2

−π/2

3z4 + z2 + 3z0

e0 sin2 θ + e1 sin θ cos θ + e2 cos2 θ
dθ,

so we have returned to the original form (20) but with different coefficients. The
result in (4) is obtained by using x = tan θ and the following identities:

8e0

3z4 + z2 + 3z0
= a

(

(3a + c)2 − 3b2

(3a + c)(a + 3c) − b2

)

(23)

8e1

3z4 + z2 + 3z0
= b

(

3(a − c)2 − b2

(3a + c)(a + 3c) − b2

)

8e2

3z4 + z2 + 3z0
= c

(

(a + 3c)2 − 3b2

(3a + c)(a + 3c) − b2

)

.

5. THE ANALYSIS OF CONVERGENCE. In the last two sections we
have shown the invariance of (1) under the Landen transformation (3). We now
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conclude by establishing the convergence of its iterates as in (5). In particular,
we show that the error

en := (an − 1
2

√

4ac − b2, bn, cn − 1
2

√

4ac − b2)

satisfies en → 0 as n → ∞. Moreover, we demonstrate cubic convergence:

‖en+1‖ ≤ C‖en‖3 (24)

for some positive constant C.
The analysis of convergence is simpler in the variables x = a + c, y = b, and

z = a − c. The dynamical system (3) translates to

xn+1 = xn

[

4x2
n − 3z2

n − 3y2
n

4x2
n − y2

n − z2
n

]

, (25)

zn+1 = zn

[

z2
n − 3y2

n

4x2
n − y2

n − z2
n

]

,

yn+1 = yn

[

3z2
n − y2

n

4x2
n − y2

n − z2
n

]

,

with initial conditions x0 = x, y0 = y, and z0 = z.
We now prove that

lim
n→∞

xn =
√

x2 − y2 − z2, lim
n→∞

yn = lim
n→∞

zn = 0

or, equivalently, that

lim
n→∞

(

xn −
√

x2 − y2 − z2
)2

+ y2
n + z2

n = 0. (26)

This is equivalent to (5), so it will finish the proof of convergence.
To complete the change of variables we use the invariance of the discriminant

(7) to obtain

x2
n − y2

n − z2
n = x2 − y2 − z2 = 4ac − b2,

and we write w =
√

4ac − b2. The first equation of iteration (25) becomes

xn+1 = xn

[

x2
n + 3w2

3x2
n + w2

]

, (27)

with initial conditions x0 = a + c (> 0). The required limit in (26) is now

lim
n→∞

xn(xn − w) = 0, (28)

with yn and zn absorbed into the constant w. The number of variables has been

reduced from three to one.
Using one last change of variables, qn = −ixn/w, we reduce (27) to
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qn+1 =
q3
n − 3qn

3q2
n − 1

=
U(qn)

V (qn)
. (29)

What we need to prove in order to establish (28) is that qn → −i. (The
polynomials U and V introduced in section 3 have miraculously reappeared!)
The trigonometric identity

U(cot θ)

V (cot θ)
= cot(3θ),

coupled with a representation of the initial condition as

q0 = cot(it) (30)

for some t (0 < t < ∞), shows that (29) simplifies to

q1 =
U(cot it)

V (cot it)
= cot(3it)

and, in general,

qn = cot(3nit) = −i
e2t 3n

+ 1

e2t 3n − 1
.

We conclude that qn → −i, whence xn → w, as desired.
To verify (30), we write q0 = −id with d = (a + c)/

√
4ac− b2. Now recall

that 4ac− b2 > 0. An elementary argument shows that d ≥ 1, so we can take

t = coth−1(d) =
1

2
ln

d + 1

d − 1
.

The fact that the convergence is cubic follows directly from

|qn + i| =
2

e2t3n − 1
,

which decreases to 0 like e−2t3n

. This implies (24) and completes the proof of
convergence.
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