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Abstract

Legendre’s formula for the classical elliptic integrals is discussed. We present a gen-
eralization of Euler’s proof of the lemniscatic case of modulus k =

√
−1 to the curves

fn(x) :=

∫ x

0

tn dt√
1− t2n

.

1. Introduction

During the first two decades of the last century, Legendre developed the theory
of elliptic integrals. His work [5] appeared in 1811 and his monumental treatise [6]
in 1825. Shortly after that, Abel published his work [1] on the inversion of elliptic
integrals and on the properties of the elliptic functions defined by this procedure.
One of Legendre’s most elegant formulae appears on [5] page 61. This is his famous
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relation: ∫ 1

0

dx√
(1− x2)(1− k2x2)

×
∫ 1

0

√
1− (k′)2x2

1− x2
dx+∫ 1

0

dx√
(1− x2)(1− (k′)2x2)

×
∫ 1

0

√
1− k2x2

1− x2
dx−∫ 1

0

dx√
(1− x2)(1− k2x2)

×
∫ 1

0

dx√
(1− x2)(1− (k′)2x2)

=
π

2
. (1.1)

The terms in (1.1) are the classical elliptic integrals that made their debut in the
calculation of the length of the ellipse and the lemniscate. The reader is referred to
[7] for details on this topic and to [2] for the history of Legendre’s relation (1.1).

The lemniscatic integral ( (1.3), below) appears in the calculation of the arclength
of the lemniscate of equation (x2+y2)2 = a2(x2−y2). Siegel [8] makes this example his
starting point in his book on abelian functions. The parametrization of the lemniscate

x =

√
r2 + r4

2
and y =

√
r2 − r4

2
, (1.2)

with r =
√
x2 + y2, yields the expression

L =

∫ 1

0

dx√
1− x4

(1.3)

for the total arclength. This lemniscatic integral was studied by Euler in [4] and is
the special case k =

√
−1 of the elliptic integral of the first kind

K(k) :=

∫ 1

0

dx√
(1− x2)(1− k2x2)

later studied by Legendre in [6]. In this case (1.1) becomes∫ 1

0

dx√
1− x4

×
∫ 1

0

x2 dx√
1− x4

=
π

4
. (1.4)

In this paper we describe Euler’s method to prove (1.4) and establish a generaliza-
tion that deals with the elastic curve

fn(x) :=

∫ x

0

tn dt√
1− t2n

for which we prove that

Rn × Ln =
π

2n

where Rn = fn(1) is the so-called main radius, and Ln is the length of the curve from
x = 0 to x = 1. The special case n = 2 yields Euler’s result.

Section 2 recalls a standard proof of (1.1) based on the fact that the Legendre
integrals satisfy a differential equation. Section 3 describes Euler’s original proof, its
generalization and discusses the issue of convergence, a fact that Euler was happy to
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ignore. Although Euler did not explicitly address the issue of convergence in [3], his
familiarity with Stirling’s formula dates from at least 1736.

2. Legendre’s proof

The first proof of Legendre’s relation (1.1) is based on a differential equation sat-
isfied by the elliptic integrals

K(k) =

∫ 1

0

dx√
(1− x2)(1− k2x2)

and E(k) =

∫ 1

0

√
1− k2x2

1− x2
dx.

Among the many identities satisfied by these functions we employ an expression for
their derivatives.

Proposition 2.1. The functions K(k) and E(k) satisfy

k(k′)2dK

dk
= E − (k′)2K (2.1)

k
dE

dk
= E −K,

where k′ =
√

1− k2 is the conjugate modulus.

Proof. This follows directly from the definitions.

Proposition 2.2. Let K ′(k) = K(k′) and E ′(k) = E(k′). Then the function KE ′ +
EK ′ −KK ′ is constant.

Proof. Employ Proposition 2.1 to check that the derivative is identically 0.

Legendre then evaluates the constant at the modulus k = 1
2

√
2−
√

3 and its com-

plement k′ = 1
2

√
2 +
√

3. In this paper we complete Legendre’s proof by using the

modulus k =
√
−1. This is explained in the next section.

3. Euler’s direct proof

In [3] Euler developed his theory of infinite products and used it in [4] to prove the
relation ∫ 1

0

dx√
1− x4

×
∫ 1

0

x2 dx√
1− x4

=
π

4
. (3.1)

In this paper we generalize Euler’s method and prove the following result.

Theorem 3.1. The generalized elastic curve

fn(x) :=

∫ x

0

tn dt√
1− t2n

(3.2)

satisfies

Rn × Ln =
π

2n
,
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Rn is the main radius, the value fn(1), and Ln is the length of the curve from x = 0
to x = 1.

Proof. We have

Rn =

∫ 1

0

tn dt√
1− t2n

and

Ln =

∫ 1

0

dt√
1− t2n

.

Integrate the relation

d
(
tk
√

1− t2n
)

=
ktk−1 dt− (k + n)t2n+k−1 dt√

1− t2n

from 0 to 1 to produce the recursive formula∫ 1

0

tk−1 dt√
1− t2n

=
k + n

k

∫ 1

0

t2n+k−1 dt√
1− t2n

. (3.3)

The value k = n+ 1 in (3.3) yields

Rn =
2n+ 1

n+ 1

∫ 1

0

t3n dt√
1− t2n

. (3.4)

Then the value k = 3n+ 1 produces∫ 1

0

t3n dt√
1− t2n

=
4n+ 1

3n+ 1

∫ 1

0

t5n dt√
1− t2n

so (3.4) produces

Rn =
2n+ 1

n+ 1
× 4n+ 1

3n+ 1

∫ 1

0

t5n dt√
1− t2n

.

Iterating (3.3) we obtain, after m steps,

Rn =
m∏
j=1

2jn+ 1

(2j − 1)n+ 1
×
∫ 1

0

t(2m+1)n

√
1− t2n

dt. (3.5)

The next step is to justify the passage to the limit in (3.5) as m→∞, with n fixed.
Observe that the left hand side is independent of m, so it remains Rn after m→∞.
The difficulty in passing to the limit is that the product in (3.5) diverges. The general
term pj satisfies

1− pj =
−n

(2j − 1)n+ 1

and the divergence of the product follows from that of the harmonic series. The
divergence is cured by introducing scaling factors both in the integral and the product.
The proof is omitted in Eulerian fashion.
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Proposition 3.2. The functions

1

2m+ 1

∫ 1

0

t(2m+1)n

√
1− t2n

dt and (2m+ 1)×
m∏
j=1

2jn+ 1

(2j − 1)n+ 1

have non-zero limits as m→∞.

Therefore from (3.5) we obtain

Rn = lim
m→∞

2m∏
j=1

(jn+ 1)(−1)j ×
∫ 1

0

t(2m+1)n

√
1− t2n

dt

where we have employed

m∏
j=1

2jn+ 1

(2j − 1)n+ 1
=

2m∏
j=1

(jn+ 1)(−1)j

in order to simplify the notation. A similar argument shows that

Ln =
m∏
j=1

(2j − 1)n+ 1

2(j − 1)n+ 1

∫ 1

0

t2mn√
1− t2n

dt

= lim
m→∞

2m∏
j=1

(jn+ 1)(−1)j+1

∫ 1

0

t2mn√
1− t2n

dt (3.6)

The final step is to introduce the auxiliary quantities

An :=

∫ 1

0

tn−1 dt√
1− t2n

and Bn :=

∫ 1

0

t2n−1 dt√
1− t2n

.

We now show that the quotient Ln/An can be evaluated explicitly and that the value
of An is elementary. This produces an expression for Ln. A similar statement holds
for Rn/Bn and Bn.

Observe first that

An =

∫ 1

0

tn−1 dt√
1− t2n

=
1

n

∫ 1

0

dx√
1− x2

=
π

2n
(3.7)

and similarly Bn = 1/n. Now consider the recursion (3.3) for odd multiples of n to
produce

An = lim
m→∞

2m∏
j=1

(jn)(−1)j ×
∫ 1

0

t(2m+1)n−1 dt√
1− t2n

(3.8)

and similarly the even multiples of n yield

Bn =
1

n
lim
m→∞

2m+1∏
j=1

(jn)(−1)j+1 ×
∫ 1

0

t2(m+1)n−1 dt√
1− t2n

,
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in the exact manner as the derivation of (3.5). Therefore using (3.6) and (3.8), and
passing to the limit as m→∞ so that the integrals disappear, we obtain

Ln
An

=
∞∏
j=1

[
(jn+ 1)(−1)j+1 × (jn)(−1)j+1

]
,

so (3.7) yields

Ln =
π

2n
×
∞∏
j=1

[
(jn+ 1)(−1)j+1 × (jn)(−1)j+1

]
.

Similarly, using Bn = 1/n,

Rn =
∞∏
j=1

[
(jn+ 1)(−1)j × (jn)(−1)j

]
.

The formula Rn × Ln = π/2n follows directly from here.

4. Conclusions

In this paper we have establish that the main radius Rn of the generalized elastic
curve (3.2) and the length Ln of this curve satisfy Rn × Ln = π

2n
. The case n = 2

corresponds to the classical Legendre’s formula for elliptic integrals.
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