A criterion for unimodality
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Abstract

We show that if P(z) is a polynomial with nondecreasing, nonnegative coefficients,
then the coefficient sequence of P(x + 1) is unimodal. Applications are given.

1. INTRODUCTION

A finite sequence of real numbers {dy,dy, - ,d,,} is said to be unimodal if there
exists an index 0 < m* < m, called the mode of the sequence, such that d; increases
up to j = m* and decreases from then on, that is, dy < d; < -+ < dp,+ and
Ay > dpry1 > -+ > dp,. A polynomial is said to be unimodal if its sequence of
coefficients is unimodal.

Unimodal polynomials arise often in combinatorics, geometry and algebra. The
reader is referred to [2] and [3] for surveys of the diverse techniques employed to
prove that specific families of polynomials are unimodal.

A sequence of positive real numbers {dy, d;,--- ,d,,} is said to be logarithmically
concave (or log-concave for short) if d;i1d;—1 > djz. for 1 < j7 <m—1. It is easy to
see that if a sequence is log-concave then it is unimodal [4]. A sufficient condition for
log-concavity of a polynomial is given by the location of its zeros: if all the zeros of a
polynomial are real and negative, then it is log-concave and therefore unimodal [4]. A
second criterion for the log-concavity of a polynomial was determined by Brenti [2].
A sequence of real numbers is said to have no internal zeros if whenever d;, d;, # 0
and i < j < k then d; # 0. Brenti’s criterion states that if P(x) is a log-concave
polynomial with nonnegative coefficients and with no internal zeros, then P(z +1) is
log-concave.

2. THE MAIN RESULT

Theorem 2.1. If P(x) is a polynomial with positive nondecreasing coefficients, then
P(z + 1) is unimodal.

Proof. Observe first that P, ,(z) := (1 4+ z)™" — (1 + x)" with 0
is unimodal with mode at 1 4 [%]|. This follows by induction on m

r<m

<
> r using
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Pri1s(x) = Ppy(z) + (1 + )™ For m even, P, 11, is the sum of two unimodal
polynomials with the same mode. For m = 2t + 1, the modes are shifted by 1, so it

suffices to check
m+1 m—+1
< 2.1
at+1—|—< " ) >~ at+2+(t+l)7 ( )

where a;41 is the coefficient of ' in P, ,(x). The case t > r yields equality in (2.1).
If ¢t <r —2then (2.1) is equivalent to » < m + 2. The final case t = r — 1 amounts

0 0= (770) - (1) < 1.

Now P(Jf + 1) = % (bopm,g(l’) + (bl - bo)PmJ(l’) + -+ (bm - bm—l)Pm,m<I>)7 SO
P(z+1) is a sum of unimodal polynomials with the same mode, and hence unimodal.

We now restate Theorem 2.1 and offer an alternative proof.

Theorem 2.2. Let by > 0 be a nondecreasing sequence. Then the sequence

¢ = Zka) 0<j<m (2.2)
k=j

is unimodal with mode m* := | ™=1].

Proof. For 0 < j <m — 1 we have
| m .
GHDGn—c) = Sh (j) < (k—2j — 1), (23)
k=j

Suppose first that 7 > m*, and let m be odd so that m = 2m* 4 1; the case m even is
treated in a similar fashion. Every term in (2.3) is negative because, if j > m*, then
k—2j—1<m-—2j—1=2(m*—j) <0, and for j =m*,

(1 4+ 1) (emess — Cme) = Z_ by (n’j) x (k —m) < 0. (2.4)
fat

Thus cj41 < ¢j.
Now suppose 0 < j < m* and define

and
m k .
T, = Y. bk(,>(/€—2j—1) (2.6)
k=2j+2 J
so that (j + 1)(¢j41 — ¢;) = To — Ty. Then

2j

k ) 27 42
T <b2j+2z(j) (2j+1—k):b2]+2( j] > < T5.

k=j

Thus ¢4 > ¢;j.
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3. EXAMPLES

Example 1. The case P(z) = 2" in Theorem 2.1 gives the unimodality of the bino-
mial coefficients.

Example 2. For 0 < k < m — 1, define
2m — 2k m+k
L —2m+k k
be(m) = 2 <m—k>< o )(a+1)
for 0 <k <m —1. Then

bisa(m)  (m—k)(m+k+1)
b(m) — (2m—2k—1)(k+1)

so the polynomial
Pu(a) = ) be(m)(a+1)"
k=0

is unimodal. We encountered P, in the integral formula [1]

0 ($4 + 2ax2 + 1)m+1 2m+3/2(a + 1)m+1/2' ’

This does not appear in the standard tables.

Example 3. For 0 < k < m — 1, define

b(m) = (=m = B)m (=m)p(m+1+a+ B
g . m! (B + 1)y k! 2k

Then, with & = m + ¢ and = —(m + €), we have

brri(m) m—k Xk’—1+m+€1—62
b(m) — m—k+e—1 2(k+1)

provided 0 < ¢; < €5 < 1. Therefore the polynomial

> 1

PP (q) = ibk(m)(a—i—l)k

is unimodal. This is a special case of the Jacobi family, where the parameters o and
[ are not standard since they depend on m. These polynomials do not have real

zeros, so their unimodality is not immediate. The case of Example 2 corresponds to
1

6126225.

Example 4. Let n, m € N be fixed. Then the sequences

Q= an (?) , B= ;k” (?) , and y; := kak (];)

k=j

are unimodal for 0 < 7 < m.
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Example 5. Let 2 < a; < --- < a, and ng,--- ,n, be two sequences of p positive
integers. For 0 < 7 < m, define

BT e
Then ¢; is unimodal.
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