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LANDEN TRANSFORMATIONS AND THE INTEGRATION OF
RATIONAL FUNCTIONS

GEORGE BOROS AND VICTOR H. MOLL

ABSTRACT. We present a rational version of the classical Landen transfor-
mation for elliptic integrals. This is employed to obtain explicit closed-form
expressions for a large class of integrals of even rational functions and to de-
velop an algorithm for numerical integration of these functions.

1. INTRODUCTION

We consider the space of even rational functions of degree 2p

€y = (R(2)= P(z) ‘ P(z):= pibk,z?(l’*lfk) and Q(z) := iak,z?(?*k)
Q(2) P ~

with positive real coefficients ay, bx, € R4 normalized by the condition ag = a, = 1,
the space

€ = |J&y
p=1

of normalized even rational functions, and the set of 2p — 1 parameters

Pop :={a1, -+ ,ap—1;b0,- -~ ,bp_1}.

We describe an algorithm to determine, as a function of the parameter set Py, a
closed-form expression of the integral

(1.1) I .= /ODOR(Z)dz

for a large class of functions R € &,,. The function R is called symmetric if its
denominator @ satisfies Q(1/2) = 272PQ(z). This is equivalent to its coefficients
being palindromic, i.e. a; = a,—; for 1 <j <p.

The class of symmetric functions plays a crucial role in this algorithm. Define

5 = {R€ &y ‘ den(R) is symmetric}

(where den(R) denotes the denominator of R), the class of rational functions with
symmetric denominators of degree 2p, and

o
& = Uegp.
p=1
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For m € N define

9, = {Re€y, (den(R))Y ™Y is even, symmetric of degree 2p}

and €3)° 1= €5’ N €3, so a function R € €, * can be written in the form

P(z
R = gty

where P(z) is an even polynomial and @Q(z) is an even symmetric polynomial of
degree 2p.

The method of partial fractions gives (in principle) the value of I in terms of
the roots of Q). Symbolic computations yield either a closed-form answer, an ex-
pression in terms of the roots of an associated polynomial, or the integral returned
unevaluated.

The algorithm described here allows only algebraic operations on elementary
functions and changes of variables of the same type. In particular, we exclude the
solution of algebraic equations of degree higher than 2. We say that a rational
function R € €, is computable if its integral can be evaluated by our algorithm.

The first step in the algorithm is to consider symmetric rational functions. In
Section 2 we prove a reduction formula, i.e. a map §) : €5, — R, that reduces the
computability of the integral of the symmetric function R to that of one of degree
%deg(R). Here R, is the space of rational functions with denominator of degree p.
These new functions are not necessarily symmetric, and this is the main limitation
of our algorithm. The details of ¥, require the evaluation of some binomial sums
which are presented in Appendix A. The classical Wallis’ formula

e dz B T 2m
0 (Z2 + 1)m+1 T 92m41 m

shows that every R € €' is computable. The reduction formula now implies that
every R € €' is computable. This is described in Section 3. The computability of
R € &, is also a consequence of the classical theory of hypergeometric functions;
the details are given in [2]. In Section 4 we compute the integral of every function
in €%, where the reduction method expresses these integrals in terms of functions
in €}*. The algorithm does not, in general, provide a value for the integral of a
nonsymmetric function of degree 8.

The final piece of the algorithm is described in Section 5: for R € €&;,, the
symmetrization of its denominator produces a (symmetric) rational function in &g,
with the same integral as R. The reduction formula now yields a new function in
&,, with the same integral as . We thus obtain a map Ty, : €3, — &, such that

(1.2) /OOCR(z)dz = /OOOTQP(R(Z))dz.

In particular, the class of computable rational functions of degree 2p is invariant
under forward and backward iteration of ¥5,. This map is the rational analog of
the original Landen transformation for elliptic integrals described in [4, 13]. The
map T, can also be interpreted as a map on the coefficients @9, : D;p — D;p

where D;rp =R, P! x R,P.
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The case of ®g is described in detail in Section 6 and is given explicitly by

94 5a1 + bas + aqas

(1.3) a“ (a1 + as + 2)4/3
a a1+ as+6
(a1 + as + 2)2/3
by — bo + b1+ bo
((11 +ag + 2)2/3
. bo(ag + 2) + 2by + ba(ay + 3)
a1+ as + 2
by — bo + b2

(a1 +ag +2)1/3°

Let x¢ := (a1, as; by, b1,b2). Then Py : Dg — Dér is iterated to produce a sequence
Xnt1 = Pg(xy) of points in Dér that yield a sequence of rational functions with
constant integral. We have proved in [3] the existence of L € R, depending upon
the initial point xg = (a1, ag; bo, b1, b2), such that x,, — (3,3; L,2L, L). Thus

/OO boZ4 + b122 + by
0 284 arzt+axz?+1

(1.4) = L(xo) x

N

This establishes a numerical method to compute the integral in (1.4).
Numerical studies on integrals of even degree 2p suggest the existence of a lim-
iting value L = L(xo) such that the sequence x,, := ®9,(x,,) satisfies

o (G R A I B B = B

The integral of the original rational function is thus § x L(xg). The proof of
convergence remains open for p > 4. Examples are given in Section 7.

The most important issues left unresolved in this paper are the convergence of
the iteration of the map ®,, discussed above and the geometric interpretation of the
Landen transformation To,. Finally, the question of integration of odd functions
has not been addressed at all.

Some history. The problem of integration of rational functions R(z) = P(z)/Q(z)
was considered by J. Bernoulli in the 18" century. He completed the original
attempt by Leibniz of a general partial fraction decomposition of R(z). The main
difficulty associated with this procedure is to obtain a complete factorization of
Q(z) over R. Once this is known the partial fraction decomposition of R(z) can be
computed. The fact is that the primitive of a rational function is always elementary:
it consists of a new rational function (its rational part) and the logarithm of a second
rational function (its transcendental part). In his classic monograph [9] G. H. Hardy
states: The solution of the problem (of definite integration) in the case of rational
functions may therefore be said to be complete; for the difficulty with regard to the
explicit solution of algebraical equations is one not of inadequate knowledge but of
proved impossibility. He goes on to add: It appears from the preceding paragraphs
that we can always find the rational part of the integral, and can find the complete
integral if we can find the roots of Q(z) = 0.
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In the middle of the last century Hermite [10] and Ostrogradsky [15] developed
algorithms to compute the rational part of the primitive of R(z) without factor-
ing Q(z). More recently Horowitz [11] rediscovered this method and discussed its
complexity. The problem of computing the transcendental part of the primitive
was finally solved by Lazard and Rioboo [12], Rothstein [17] and Trager [18]. For
detailed descriptions and proofs of these algorithms the reader is referred to [5] and
[6].

2. THE REDUCTION FORMULA

In this section we present a map §, : €;’° — € that is the basis of the
integration algorithm described in Section 5. The proof is elementary and the
binomial sums discussed in the Appendix are employed.

Let D,(z) be the general symmetric polynomial of degree 4p. We express the
integral of 22”/D;"+1 as a linear combination of integrals of z2j/E}T+1 where E,, is
a polynomial of degree 2p whose coefficients are determined by those of D,,.

Theorem 2.1. Let m,n,p € N. Define

p
(2.1) Dp(dy,da, -+ dpiz) = Y dpyrop(2F +2772F)
k=0
and
p+1
Ep(dl,dz, e ,dp;z) — Zdﬂ' 22P 4
j=1

p p—i+1l . . . .
. . +i—1/(74+2i—2
+ g 22i—1,2(p—1) g ‘772 <‘7 ! )dj-l-ia

i=1 =1 J-1
(2.2)
for d; € Ry. Then for 0 <n<(m+1)p—1,

/°° 22" dz B
0 (D,’D(dh"' 7dp;z))m+1

(m+1)p—n-1 Cm—14 i\ [>® 2((m+1)p—1-4)
S S )
0 (Ep

m+1
i=0 2j (i, dp;2))"T
(2.3)
and for (m+1)p — 1 <n < 2p(m + 1) — 1 we employ the symmetry rule
(24) Nn,p = N2p(m+1)—1—n,p'

Proof. First observe that (2.4) follows from the change of variable z — 1/z. Now
consider
22" dz

@5) Napld i) = [
D P 0 ( Zz:() dp+17k(z4p_2k + ZQk) ) +1
for 0 <n < (m+ 1)p — 1. The substitution z = tan 6 yields
N /71'/2 (1 _ C2)nC4(m+1)p—2n—2 de
e (Shg ok {1 - 02RO 4 (1 - 02)hCte 2k )
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where C' = cosf. Letting ¢ = 26 and D = cosv = 2C? — 1 then gives
/Tr (1 _ DQ)n(l + D)Q(m+1)p—2n—1 dw
0 (Chopdpr1-r(l = D2 {(1 = D)2r=2¢ 4 (14 D)2=2k} )"0

Now observe that the integrals of the odd powers of cosine vanish when we expand
(1 + D)2(m+p=2n—1 nroducing

MY R0 > vl ot il
n,p = ponpr
—k _ .
0 {Ei:o dp+1—k(1 _ D2)k Z?:o (2p2j2k)D2j}
A second double angle substitution ¢ = 21 gives
N R /7\' (1—E)" EYEJ””‘"‘I (2(m+1)2€.72n71)2p(m+1)—n—j—1(1 +E)j dy
P m—+1
—k _ . .
0 {Zizo dpi1-(1 — E)e 02k (2P2j2/€)2p—k7j(1 +E)J}
where E = cosp = 2D? — 1. The change of variable z = tan(¢/2) then yields
m—+1)p—n—1 m —2n— ——i—
Ny = 27 o 2T (O ) (L )
n,p
0

— _ . m+1
{Zi:o dpy1-£22" (Zfzg (2P2j2k)(1 + ZQ)p—k—j>}

N”;P

)

(2.6)
Finally, we modify (2.6) using Lemma A.2 and Lemma A.4 with N = (m+1)p—n—1
to produce (2.3). O

Note that the previous theorem associates to each rational function of symmetric
denominator

b5225+b5,122(571)+~~‘+b0
(Z4p+dpz4p*2+,,,+2d122p+,,,+1)m+1

Rl(z) =

a new rational function
(m+1)p—1  (m+1)p—n—1 L2((m+1)p—1-3)

m p(m+hp=n=1+j
Ro(z) = 2™ 3 ba ) 4(( )p2j j)(Ep(dh--dem“

n=0 =0

/OOO Ri(z)dz = /ODO Ro(2) d=.

3. THE QUARTIC CASE

such that

In this section we describe the computability of rational functions R € €&}'.
These are functions of the form
P(z)
(24 + 2az22 + 1)m+1
where P(z) is an even polynomial of degree 4m+ 2. Observe that the normalization
agp = a2 = 1 makes the denominator of R automatically symmetric. It suffices to
evaluate

R(z) =

o 22" dz
3.1 Ny, 4(dy; =
(3:-1) aldizm) /o (2% + 2d, 22 + 1) +1
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where 0 < n < 2m+1 is required for convergence. From (2.4) we have Ny, 4(d1;m) =
Nom—1-n,a(d1;m), so we may assume 0 < n < m. We now employ Theorem 2.1 to
obtain a closed form expression for N, 4(d1;m).

Theorem 3.1. Let m € N and assume 0 < n < m. Then

> 22" dz
3.2 Npa(dy;m ::/ =
( ) ,4( 1 ) 0 (2’4 2d122 1)rrL+1

. _ . . —1

r , o (2m =25 =1\ (m—n+75\(25)(m
27(1+dy)’ :

(1 4y * 2 2 () X( m—j )( 2 )(g)(g)

For m+1<n <2m+ 1 we have

(3.3) /OO 2 =
. 0o (2*+2d122+ 1)erl
n—m-—1 . . . —
T 2m -2 -1\ /m—n+3\[/27\ /m
27 (1 +dy)
P2 (14 dy) 2 Z:; T ( m—j )( 2j )(y)(y)

Proof. We apply the result of the Theorem 2.1 with D;(dy; z) = 2% +2d;22 + 1 and
Ei(dy;2) = (1+dy1)2? + 2, so that

e8] 2n 2(m—j
/ 2" dz _ 2_mz4j n+j / 22(m=3) d .
o (21 42d122 +1)mHl o ((T+di)z?+2)mHt
The change of variable u = (1 + d1)22/2 then yields
[o'e} 2(m—y7 0, m—j—1/2
/ V4 ( ]) dZ l _ 2*(j+3/2)(1+d1)*m+].*1/2\/ u J / du
o (AFd)Zr2)ymn S

_ <2m - 2j) <2j> (m)_l —(2m4j+3/2) —(m—j+1/2)
= 7 ) ; } 2 I (1+dy) J ,
m—=] J J
where we have used
/°° w12 du = 7r <2r> (2(8 —r— 1)) (s - 1>_1
o (14+w)s 22(s=1) \ s—r—1 r '

The algorithm also requires a scaled version of Ny 4(d1;m).

Corollary 3.2. Let b >0, ¢ >0, a > —vbe, m €N, and 0 < n < m. Define
o] 2n d
Npa(a,b,e;m) = / S
o (

bzt + 2022 + )"
Then for 0 < n <m,

—1/2

Npa(a,bcm) = < (c/b)™" "{8(a+\/ﬁ)}2m+1> «

SN0 ()



LANDEN TRANSFORMATIONS AND THE INTEGRATION OF RATIONAL FUNCTIONS 7

and for m+1<n <2m+ 1,

Nya(a,b,e;m) =« <c(c/b)m" {8(a + \/E)}zm—‘_l) o X

n—m-—1 -1 k
2m — 2k —n+k\ (2k\ (m a
ok —+1]) .
<2 GO0 G
(3.5)
Proof. Let 0 < n < m. The substitution u = z(b/c)*/* yields

1 a
(3.6) Nna(a,b,c;m) = Cmfn/2+3/4bn/2+1/4Nn74 (ﬁ;m>7

o (3.4) then follows from Theorem 3.1. From (2.4) we have N, 4(a,b,c;m) =
Nomi1-na(c,b,a;m) for m+1 <n <2m+ 1, giving (3.5). O

4. THE SYMMETRIC CASE OF DEGREE 8

In this section we prove the computability of the set €¢"* of symmetric rational
functions with denominator of degree 8 and establish an explicit formula for the
integral

Noslarsazm) = [ s
nslai,as;m) =
,8\ad1, d2 0 (28+a226+2a124+a222+1)m+1

where 0 < n < 4m + 3 is required for convergence. Observe that (2.4) reduces the
discussion to the case 0 < n < 2m + 1. The expression (2.2), with p = 2, produces
Es(ar,az;2) = (1 + a1 + az)2* + 2(ag + 4)2% + 8.

Theorem 4.1. Every function in €g"® is computable. More specifically, define
cr:=as+4, co:=14ay +asg, and

tr(m,nyar,az) = 7T2—(3m+2+k+j)/26g’n*k*j)/2(cl_i_\/%)j—m—l/Z %
dm—n—k+2\ [2m =25\ (m—k+ 7\ (25 [m) "
k—n m—j 2j J/)\J .
Then form+1<n<2m+1, 14+a; +as>0and as +4 > —8/8(1 + a1 + az2),
2m+1k—m—1

o 2 dz
/0 (25 + a2 + 24120 + ag2? + 1)L Z Z th,g(m, a1, az),

=N

and for 0 < n < m,

> n dz
/0 (28 + ap2® + 2a12% + ap2? + 1)m+1

m m— 2m+1 k—m—1
E E kj(m,n; a1, az) E g ti;(m,m; a1, a2).
k=n j=0 k=m+1 j=0

Proof. The reduction formula yields

/oo 2N dz _
o (284 ag28+ 2a1z4 +agz? +1)m+l

3ma2 ! o fdm —n—k+2 22k dz
TR o . —
= k—n o (c2z* 4 2¢122 + 8)m+
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We then use Corollary 3.2 to evaluate (4.1). O

5. A SEQUENCE OF LANDEN TRANSFORMATIONS

The transformation theory of elliptic integrals was initiated by Landen in 1771.
He proved the invariance of the function

(5.1)

. / \/a2cos29+b251n 0
under the transformation
(5.2) a1 = (a+1b)/2 by = Vab,
i.e. that
(5.3) G(a1,b1) = G(a,b).
Gauss [7] rediscovered this invariance while numerically calculating the length of a
lemniscate. An elegant proof of (5.3) is given by Newman in [14]. Here, the sub-
stitution = btan 6 converts 2G(a, b) into the integral of [(a? + 2?)(b* + z?)] o
over R; the change of variable t = (x — ab/x)/2 then completes the proof.

The Gauss-Landen transformation can be iterated to produce a double sequence
(an,byn) such that 0 < a, — b, < 27". It follows that a, and b, converge to

a common limit, the so-called arithmetic-geometric mean of a and b, denoted by
AGM/(a,b). Passing to the limit in G(a, b) G(an, b, ) produces

(5.4)

2AGM (a,b) / \/a2 cos2 0 + b2 sin 29

The reader is referred to [4] and [13] for details.
The goal of this section is to produce a map Tg, : €3, — Eo,, that preserves the
integral, i.e.

(5.5) / R(z)d> = / Ty (R()) d=.
0 0
This map is the rational analog of the original Landen transformation (5.2).

Theorem 5.1. Let R(z) = P(2)/Q(z) with

(5.6) Zb 2P=1=9) and  Q(z Za 229

7=0 7=0
Deﬁneaj:0f0rj>p,bj:0f0rj>p—1

(5.7) dpt1—j Zap kQj—k

for0<k<p-1,

1 p
(5.8) di = 3 az_j
k=0

2p—1

(5.9) ¢ = Zajbp—l—j-i-k
k=0
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for 0 < j <2p—1, and also

(5.10) ap(i) = {Qm LR T R (M) s i 1 < < p

k
1+ 30 dpifi=0.
Let
(5.11) o = 0

? 227,Q(1)2(17i/p)
for1<i<p-—1, and

p—1—i .
. 1k
(5.12) b = Q)*/PH/r2x [ > (Ck+02p—1—k)(p . +Z>

21
k=0

for 0 < i < p— 1. Finally, define the polynomials

p—1
(5.13) PT(2) =Zb;~'22(p717i) and QT (z Za+ 2p=1),
k=0

Then Ty, (R(2)) := PT(2)/Q" (2

satisfies (5.5), i.e
[P
Q) Jo Q%)

Proof. The first step is to convert the polynomial Q(z) to its symmetric form:

_[TPR), [0
I"/o o= ), D)

(5.14)

with
2p—1
C(z) = P(z2)x2PQ(1/2): Z cp2k
D(z) = Q(z) xzQ(1/z) = deJrlfk(Z% + 22(2P=k))
k=0
Then

2p—1 oo2kdz
- Yaf Go

Now employ the reduction formula in Section 2 to evaluate
22k dz
o Q(2)
Observe that one needs to evaluate Li only for 0 < k < p — 1. Indeed, the usual
symmetry rule yields Ly = Lop—1—. The reduction formula now gives

p—1—k 2 1—
Ly > (" kﬂ / ot
=0 D i ()220

—y (PR 4T =2 22 22(r=3) dz
2j —2 Zp bF 22(0—0)

with oy, (i) as in (5.10) and A = [a,(p)/a,(0)]/%". O

Lk =
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Note. The extension of this transformation to the case of

= p(2)
A Qg

requires explicit formulae for the coefficients of P(z)x ( zQpQ(l/z))mJrl and QM1 (2)x
(22rQ(1/2))"*".
An algorithm for integration. Let x = (a,b) with a = (a1,--- ,ap_1), b =
(bo, -+ ,bp—1), and let Dgp =R, P! x R,P. We then have a map
Dy - D;p — D;p

x:=(a,b) — x":=(a’,b")
where a; and b are given in (5.11, 5.12). Iteration of this map, starting at xq,
produces a sequence X,11 = Pa,(x,) of points in D;rp. The rational functions

formed with these parameters have integrals that remain constant along this orbit.
Numerical studies suggest the existence of a number L = L(x() € R, such that

Xn p7 pa"'a P 5 p_l La p_l La"'a p_l L).
1 2 p—1 0 1 p—1
Thus the integral of the original rational function is § x L.
6. THE SIXTH DEGREE CASE

We discuss the map g, : €y, — &y, for the case p = 3. The effect of T¢ on
the coefficients B¢ = {bo, b1, b2, a1, az} is denoted by ¢ : O — OF and is given
explicitly by

94 5a1 + bas + aqas

(6.1) ap — (a1 + as + 2)4/3
4 — a1 +as+6
(a1 + a2 + 2)2/3
by — bo + b1 + b2
(a1 + as + 2)2/3
b bo(ag + 2) + 2by + ba(ay + 3)
aiy +az +2
by — bo + by

(a1 + a2 + 2)177
using Theorem 5.1. The map ®g preserves the integral

b02’4 + b122 + b2
20+ a1zt +agx? +1

(6.2) Us(a1,az,bo;b1,b2) = /
0
and the convergence of its iterations has been proved in [3], the main result of which

is the following theorem.

Theorem 6.1. Let xq := (a2, a9;3,b9,09) € R, 5. Define x,,;; := ®¢(x,,). Then
Us is invariant under ®¢. Moreover, the sequence {(a},a%)} converges to (3,3) and
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{(by, by, b))} converges to (L,2L, L), where the limit L is a function of the initial
data xg. Therefore
/OO b024 + b122 + by
0 284 arzt+axz?+1

™
= L(XO) X 5
This iteration is similar to Landen’s transformation for elliptic integrals that has
been employed in [4] in the efficient calculation of 7. Numerical data indicate that
the convergence of x,, is quadratic. The proof of convergence is based on the fact
that ®g cuts the distance from (a1, as) to (3,3) by at least half.

A sequence of algebraic curves. The complete characterization of parameters
(a1,a2) in the first quadrant that yield computable rational functions

b024 =+ b122 =+ b2
26 +ajzt 4 a22 + 17
of degree 6 remains open. The polynomial 2% + a;2* + ag2? + 1 factors when
a1 = ag so the diagonal A := {(a1,a2) € Ry x Ry : a; = ag} produces computable
functions. In view of the invariance of the class of computable functions under

R(z) =

iterations by ®g, the curves X,, := q)éfn)(A), with n € Z, are also computable.
The curve X; has equation
(94 5a1 + 5ag +ajaz)® = (a1 + ay +2)*(ay + ap + 6)3

and consists of two branches meeting at the cusp (3,3). In terms of the coordinates
r=a; — 3 and y = az — 3 the leading order term is T3 (z,y) = 1728(x — y)2. This
curve is rational and can be parametrized by
(6.3) ar(t) = t2 —t* 28 — 12+t +1)

ag(t) = t3(° +t* — 3 2% —t 4 1).

The rationality of X,, for n # 1 and its significance for the integration algorithm
remains open. The complexity of these curves increases with n. For example, the
curve Xy := @éﬁz)(A) is of total degree 90 in z = a; — 3 and y = ay — 3 with leading
term

To(z,y) = 2"213%(z—y)'® [-163(z* +y*) + 6682y (z® + y?) — 10742”y?] .
The diagonal A can be replaced by a 2-parameter family of computable curves
X(c, d) that are produced from the factorization of the sextic with a; = ¢+ d and

az = cd+1/d. All the images @é_n)X(c, d) with n € Z are computable curves. The
question of whether these are all the computable parameters remains open.

7. EXAMPLES

In this section we present a variety of closed-form evaluations of integrals of ra-
tional functions.

Example 1. The integral
/ e 22 23698523
dZ = _—_—
o ( o 12230590464/6

24+ 422 +1)
is computed by Mathematica 3.0 using (3.2) in .01 seconds. The direct calculation
took 12.27 seconds and 6.4 extra seconds to simplify the answer.
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Example 2. The integral of any even rational function with denominator a power
of an even quartic polynomial can be computed directly by using Corollary 3.2. For
example:

/°° 20 dz _ 11m(14229567 + 4937288 v/6)
o (222 +22243)1 440301256704 (1 4 v/6)21/2

Example 3. The case n =0 in (3.2) deserves special attention:

™
(7.1) N074(a; m) 2m+3/2(a ¥ 1)m+1/2 Pm(a)
where
Ui 2m —2k\ /m+k
2 Ppla) = 272m) ok DF.
(7.2) (a) kZ:O <m—k>( m )(a+)

The polynomial P, (a) has been studied in [1] and [2].

Example 4. The case n =m in (3.2) yields

Nalaim) = [ — - (T
am) = = :
m,4\% o (2442022 4 1)m+l T 23mH3/2(1 4 q)mt1/2 m

The change of variable z — +/z converts this integral to

1 [ 2m=1/2 gz
Nm 5 = 3 )
alaim) 2 /0 (22 + 2az + 1)m+!1

which is [8] 3.257.9.

Example 5. A symmetric function of degree 6. The integral

e’} xg ') xs
1= —dx :/ dx
/0 (26 4 4zt + 422 + 1)° o [(@24+1)(z* + 322+ 1)

can be computed by decomposing the integrand into partial fractions as

1 1 6 11 31
@ @+ @+ @R @)
1 222 4 322
+(x4 +3x2 +1)° * (4 +322+1)5 (' +322+ 1) (2t + 322+ 1)* *
12 62 32 1422
@132 117 132 11)P (@432 12 (A 1321 1)?
73 3122

+(x4+3:c2 +1) + (x* + 322+ 1)
Each of these terms is now computable yielding

1407326+/5 — 3146875
160000

Example 6. Non-symmetric functions of degree 6. In this case we can use the
scheme (6.1) to produce numerical approximations to the integral. For example,
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the evaluation of

/°° 452* + 2500022 4+ 1230
o 254244300022 + 1

is shown below:

al ay by bt by

1 3000 45 25000 1230
415786 | 14.4465 | 126.233 | 63.2884 | 88.3741
2.06562 | 3.17262 | 42.2607 | 156.015 | 83.6896
2.98142 | 3.00338 | 75.3541 | 137.717 | 65.1111
2.99999 3. 69.6338 | 139.925 | 70.2771

3. 3. 69.9589 | 139.914 | 69.9555
3. 3. 69.9572 | 139.914 | 69.9572
3. 3. 69.9572 | 139.914 | 69.9572

N O U W= O3

Thus L ~ 69.9572 and
/°° 45z + 2500022 + 1230
o %+ x4+ 300022 + 1

dr ~ 69.9572 x g & 109.889.

Example 7. Symmetric functions of degree 8. These integrals can be evaluated
using Theorem 4.1. For example:

/°° dz (14325195794 + 2815367209 /26 ) 7
o (24520641424 4522+ 1) 14623232 (9 + 21/26 )7/2

Example 8. As in the case of degree 6 we can provide numerical approximations
to nonsymmetric integrals of degree 8. The iteration (6.1) is now replaced by

ne1 a3(al +a¥) +4atay +10(af + af) + 8(af +2)
" N (a} + a¥ + a% + 2)3/2
At = ata} +6(af + a}) + 2(aj + 10)

2 a +al +a3+2

il at +aj +8
aj =

(a + a3 +af +2)1/2

by + bF + by + by
(af +af + af +2)%/*
prtl by (3T + ay +6) + by (af +4) + b7 (az +4) + b5 (3az + aj + 6)

L (af + a3 + aj +2)°/4
b3 (al +5) 4+ by + by + bj (af + 5)
(a} + af + af +2)%/*
by + by

(af +a3 +af +2)1/8
with initial conditions a{,a3,a$, b3, b?, b3, b3. Then

bol‘ﬁ + b1.2?4 + bgl‘z + b3
28 +a12% + aszt +azx? + 1

n+1 _
bO

n+1 _
b2

n+1 _
b3 =

(7.3) Us(ai,ag,a3,bg,b1,ba,b3) = /
0

is invariant under these transformations.
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Note. Numerical calculations show that (a7, a3, a%) — (4, 6,4) and that (b, b7, by, by) —
(1,3,3,1) L for some L depending upon the initial conditions.

Example 9. A symmetric function of degree 12. We use Theorem 2.1 to evaluate

7o /°° 218dz
T Jo (212 414210 4 1528 4+ 426 4 1524 4 1422 +1)3
as
(7.4) 257(25v/56 — 54)

301989888

Here p =3, n=9,and m = 2, so n > (m + 1)p — 1 and we need to apply the
transformation z — 1/z to reduce the value of n. Indeed, we have

[eS) 216 dz
I =
/0 (212 4+ 14210 4+ 1528 + 426 + 152% + 1422 + 1)3’
and Theorem 2.1 now yields

[ /OO 216 dz
B o 131072(1 + 22)3(1 + 422 + 24)3°

The new integrand is expanded in partial fractions in the variable ¢ = 22 to produce
(7.4).

Example 10. We use Theorem 2.1 to evaluate

I = - Zloi
o Q%*(z)
where
Q(z) = 22046218 493210 — 2421 4 16222 4 548210 4 1622% — 2420 + 932% + 622 + 1.
The factorization
Q) = (1+2)T(2)T(~2)
with
T(z) = 28—22" 442041425462 — 1423 + 422 + 22 + 11

leads to a partial fraction expansion containing the term

72 — 5012 + 199422 — 261723 + 12282* — 4325 + 3425 — 5527
8388608(1 — 2z + 422 + 1423 + 624 — 1425 + 426 + 227 4 28)2’

which we were unable to integrate; furthemore, the roots of T'(z) = 0 cannot be
evaluated by radicals. The procedure described in Theorem 2.1, however, shows
that

I = /°° 210(4 + 22) (2% + 362% + 9622 + 64) d=
Jo 524288(22 4 1)2 (28 + 326 4 824 + 322 +1)2’
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the integrand of which can be expanded to yield

;- 9 /°° dz 75 /°°dz
8388608 [, (22+1)2 8388608 J, 2241
°° 192126 + 108152% + 411122 + 1462
/0 2097152 (28 + 326 + 824 + 322 + 1)2

n /°° 9120 + 7192* + 125922 — 5764
o 8388608(28 4+ 326 + 824 + 322+ 1)

Every piece is now computable, with the final result

(6480 — 509/15) 7
24159191040

Example 11. The symmetric functions of degree 16 have denominator
Dy(dy,do,d3,dy;2) = 204 dyz' + dsz'? + do2'® + 2d1 28 + dp2® 4 dsz® + dy2® 41,
the integral of which is computed in terms of
Ey(dy,do,ds,dy;2) = (14 dy +do+ds +dg)z® +2(16 + da + 4ds + 9dy4)2°
4+ 8(20 + d3 + 6dy)z* + 32(8 + dy)2? + 128.
This new integral is symmetric provided
(75) AR

Introduce the new parameters

ej:dj_<5§j) for2<j<4 andelzdl—%<i>.

Then (7.5) yields

" o) = e [7]=

Thus, if the original denominator has the form

Di(z) = (210 +1) +da(z" +22) +ds (=12 + %) + (112 — dds + Tda) (=2 + 29)
+2(15 + 3d3 — 8dy) 2%,

the integral

= P
J (Dafx) )

is reduced to an integral with symmetric denominator of degree 8 and these are
computable. We can thus evaluate a 2-parameter family of symmetric integrals of
degree 16.

For example, take d3 = d4s = 1 to obtain

24

(216 4+ 214 4 212 4 115210 + 2028 + 11526 + 2% + 22 + 1)2°

The main theorem yields

10242% + 230425 4+ 179228 + 560210 + 60212 + 214
27(1628 + 3626 4 272% 4 3622 4 16)2

(7.7) Ri(2)

(78)  Ra(:) =
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/OOORl(z)dz = /OOORQ(Z)dZ.

Letting f[n] := Ny, g[1,n,27/32,9/4] we obtain

so that

/Oo Ri(2)dz = 275 (f[0] + 60f[1] + 1584f[2] 4+ 4096 f[3])
0

and conclude that

> 2t dz
/0 (216 + 214 4 212 4 115210 + 2028 + 11526 + 24 + 22 + 1)2

(149288517 4 12947003+/131)m
1124663296+/54925 + 4798y/131

Example 12. We classify the symmetric denominators of degree 32 that yield
computable integrals. These functions depend on 8 parameters

8
(7.9) Dg(dy, - ,dg;z) = Y do_(2% + 22067K))
k=0
and the main theorem expresses the integral in terms of Eg. The conditions for Eg
to be symmetric yield

dy = —3441 + 35ds + 64dg — 312d; — 3264dg
da = 34720 — 56d5 — 110dg + 560d7 + 4565dg
ds = —3472+ 28ds + 64ds — 329d7; — 2240dg
dy = 4960 — 8ds — 19dg + 80d7 + 938ds

and the symmetric Fg is

Fxs(ds, dg, dr, ds; z) = 32768(1 + 2'6) 4 (131072 4 8192dg) (22 + 2'*)+
(212992 + 2048d7 + 28672dg)(2* + 2'%) + (180224 + 512d + 6144d; + 39424dg)(2° + 210)+

+(84480 + 128d5 + 1280ds + 6912d7 + 26880dsg)=°.

The symmetry of Eg now determines ds, dg in terms of d7, dg and we obtain

dy 63475 9166 54640
ds —100800|  |—14392 86645
ds| 47936 6895 41664
(7.10) d = T3 Ziseea | T | —106a | D | Z11am1 | 98
ds 92990 392 2000
de —994 98 —189

The function (22 + 1)!° is a symmetric polynomial of degree 32 and yields a par-
ticular solution to (7.10).
As before let

1 1
ejdj(g_GJ> fOI‘QS]Sg andeld1%<86>
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Then

e 9166 54640
e 14392 86645
es| | 6895 41664
(7.11) el T | —1964 | €7 [ Z11471]| €8
e 322 2000
e 98 —189

and as in the case of degree 16 we can compute a 2-parameter family of symmetric
integrals of degree 32.

APPENDIX A. TWO BINOMIAL SUMS

The closed-form evaluation of sums involving binomials coefficients can be ob-

tained by traditional analytical techniques or by using the powerful WZ-method
as described in [16]. We discuss two sums used to simplify expressions in later
sections, presenting one proof in each style.

Lemma A.1. Let k, N be positive integers with £ < N. Then

(A1)

Proof. Multiply the left hand side of (A.1

L /aN +1\ (N = ON —k\ Nk
27y, k - o)
=0 N
by ¥ and sum over k to produce
2N + N —j\ &
2] k .

2N +1
1
25 ) e+

~

N N-k

I;JZ;(QNH)(Nk )mk _

1= 10 £

1_|_ /$+1)2N+1 (1_ $+1)2N+1
2vx+1

N
S <2N—k>4N_k£k
L .

k=0

In order to justify the last step we start with the well known result

(A2) 1 1-yT=4y\" _ 3 2%+ i
' VT -4y 2% —\ &
(see WILF [19], page 54). Letting x = —4y and ¢ = 2N + 1 in (A.2) gives
(1—Va+1)2N*H _ i(_l)kﬂ (2N +1+ 2k) A~ (N+1+k)  2N+1+k,
2V +1 P k ’
similarly z = —4y and ¢ = —2N — 1 yields
(1+ /x+1)2N+1 _ i (71)k+1 2N + 1+ 2k 47(N+1+k)x2N+1+k
2Vr+1 k '

k=2N+1
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Thus
(L Ve F 1)V — (1= Va T TN %H)k(—(?N - 2k))4N_kxk
2V +1 k=0 g
N
= 2 <2Nk: k) s
k=0

Lemma A.2. Let N € N. Then

N N .
2N +1 O N N7\ i oan—j
1 Jo— 49 2(N=3)
Z( 2 )( ) Z( 2 )*F

=0

Proof. The coefficient of 2%* on the left hand side is
Nik (2N+1> (N—j)
=\ 2 k

and the corresponding coefficient on the right hand side is (2Nk_k) 4N=F  The result
then follows from Lemma A.1. O

Lemma A.3. Let k&, N € N with £ < N. Then

z’“: INY (N —j\ 2% IN(k+N-1
2§ J\N —-k) k N—-k )

Jj=0

Proof. This lemma could be proven in the same style as Lemma A.1. Instead we
use the WZ-method as explained in [16]. Indeed, let

k(5 (VH)

F(kij) = ———~—o
N2zt (PR
and define, with the package EKHAD, the function
. . j(25 —1
G(k;jg) = F(k;j) x ( )

2N +k)(k—j+1)

Then F'(k;j)— F(k+1;j) = G(k; 5+ 1) — G(k; j), and summing over j we see that
the sum of F(k;j) over j is independent of k. The case k = N produces 1 as the

common value. O
Lemma A.4. Let p € N, dy,ds, - ,dp, be parameters, and define dp,; := 1. Then
p p—k
2p — 2k .
2k 2\p—k—
(A.3) S i Y ( ” )(1 B
k=0 7=0
p+1

i=1 j=1

p p+1l—i . . . .
I -5 2i—1_2(p—i) Jri—1 (j+2i—-2\
I 3 e (R L



LANDEN TRANSFORMATIONS AND THE INTEGRATION OF RATIONAL FUNCTIONS 19

Proof. For fixed 0 <4 < p — 1 the coefficient of 22! on the right hand side of (A.3)
is

92(p—i)=1 £ r+p—i—2
RHS] (2i)) = — _1 d,,
RS (21 I ()

and for ¢ = p we have [RHS] (2p) = 1 + Z?Zl d;. Similarly, for the left hand side
of (A.3),

AR Eljor—o\/ r—j—1
LHS](20) = > dn Z( . )( . )
i = 2j r—j—141

It is easy to check that the coefficients of 2P match. It suffices to show that for
each i such that 0 < i < p—1 and for each r such that p+1—¢i <r <p+1 we

have

”Z‘i 2 —2\[ r—1-j B 22@—1')—1( (72

=\ 2 J\r—1-p+i) = i " r—pt+i—1)
This follows from Lemma A.1 with k=p—diand N =r — 1. O

The suggestions of the referrees and the editor are gratefully acknowledged.
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