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Abstract. An analytic expression for the generating function of the reciprocal

of Catalan numbers is established by a variety of methods. These include some
traditional proofs as well as one based on symbolic computations.

1. Introduction

In a recent issue of The American Mathematical Monthly, the readers will find

Problem 11765. Proposed by David Beckwith, Sag Harbor, NY. Let Cn be the

n-th Catalan number, defined by Cn =
1

n+ 1

(
2n

n

)
. Show that

∞∑
n=0

2n

Cn
= 5 +

3π

2
and

∞∑
n=0

3n

Cn
= 22 + 8

√
3π.

The question can be made slightly more challenging by asking:

Modified problem 11765. Find the values of the series
∞∑
n=0

2n

Cn
and

∞∑
n=0

3n

Cn
.

It is often the case that the solution of a problem becomes easier if one becomes
more ambitious and aims to answer a more general question. In this context, we
ask:

Generalized question. Find a closed-form formula for

(1.1) f(z) =

∞∑
n=0

zn

Cn
.

The ratio test shows that the series converges for |z| < 4, this will be reflected in
the expressions obtained for f(z). The original questions correspond to the values
f(2) and f(3). The reader will find a nice introduction to Catalan numbers in [9].

The results presented here come from our effort to produce different forms to
solve this problem. The goal is to use a variety of methods that illustrate the
approach that the authors use in the evaluation of series and integrals. The original
question is relatively simple, so it is a perfect example to motivate these methods.
The reader will travel to the world of Special Functions, Symbolic Computational
Systems/Languages, Automatic Proofs and Probability. Many of the solutions
will lead to the evaluation of definite integrals. Aside from classical and symbolic
methods, the authors have chosen the table of integrals by I. S. Gradshteyn and

Date: March 23, 2015.

1



2 T. AMDEBERHAN ET AL.

I. M. Ryzhik [6] as the main source for definite integrals. The reliability of the
entries in this table is of interest to the fourth author.

The word Show in Problem 11765 is interpreted here as Prove, so it is required to
have a preliminary discussion on what constitutes a mathematical proof. A search in
the literature produces a large variety of documents involving a discussion on this
topic. For instance, some lecture notes for an Introduction to mathematical

arguments by Michael Hutchings, begins with the following statement: A mathe-
matical proof is an argument which convinces other people that something is true.
A colloquial mathematical joke on this topic is: ‘You only need to convince three
people: one editor and two referees’. Henry McKean [11, p. 104] provides a quote
attributed to Mark Kac: ‘A demonstration is to convince a reasonable man, a proof
is to convince an unreasonable man’ . Under this point of view, most of the argu-
ments presented here fall under the category of demonstrations. The reader will
find in [2] and [17] some discussions on the role of computers in proofs, [7] and [8]
describe the role of proof in Mathematics and Physics, [14] describes the role of
proof in the progress in Mathematics and [5] presents an analysis on the role of
proofs in the classroom.

2. The first proof: a Mathematica evaluation

In the second decade of the 21st century, it is natural to approach the question
above as follows: What does a Computer Algebra system say about the value of this
series? The authors use Mathematica and in version 9.0 simply input the line in
boldface below to obtain the answer.

In[1]:= Sum[2n/CatalanNumber[n], {n, 0, Infinity}] // Expand

Out[1]= 5 + 3π/2

The command Expand simply transforms the answer from 1
2 (10+3π) to the form

stated above. This gives the first evaluation. A similar Mathematica calculation
produces the second one, this time the command Function Expand is used in the
simplification. Is this considered a mathematical proof? There is a variety of
sophisticated, well-tested algorithms behind the evaluation presented above. Given
enough time, one could run the algorithm by hand and verify each of the steps.
Would that constitute a proof?

3. The generalization

In the process of solving a question, such as the one proposed here, the authors
always keep in mind how to explain their approach to students. The statement
of the current problem leads naturally to the following question: Is it possible to
replace the values 2 and 3 by a general variable? In other words, is it possible to
produce a closed form for the generating function

(3.1) f(z) =

∞∑
n=0

zn

Cn
.

This is the generalized question mentioned in Section 1.

Using Mathematica again,

In[2]:= Sum[zn/CatalanNumber[n], {n, 0, Infinity}]
Out[2]= Hypergeometric [1, 2, 1/2, z/4] .
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The answer now involves the hypergeometric function

(3.2) 2F1

(
a, b

c

∣∣∣∣z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn

with

(3.3) (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1)

the Pochhammer symbol. These might be expressed in terms of the gamma function

(3.4) Γ(s) =

∫ ∞
0

ts−1e−t dt, for Re s > 0

as

(3.5) (a)n =
Γ(a+ n)

Γ(n)
.

The reader will find in [3] extensive information about this special function.
To the non-expert, the use of a symbolic package to evaluate a series, has had

a positive effect: it lead him/her to one of the most beautiful non-elementary
functions. For a teacher of Mathematics, this is great. Naturally, this brings many
questions, the most basic of which is whether the expression for the generating
function (3.1) can be simplified.

A power series h(z) =

∞∑
n=0

unz
n is called hypergeometric if the ratio

un+1

un
is

a rational function of n. Most functions encountered in elementary courses are
hypergeometric. The exponential h(z) = ez is one of them, since in this case

un =
1

n!
and

un+1

un
=

1

n+ 1
is a rational function of n. Naturally, the geometric

series, for which un = 1 is also hypergeometric function. The canonical notation
for these functions comes from the factorization

(3.6)
un+1z

n+1

unzn
=

(n+ a1)(n+ a2) · · · (n+ ap)

(n+ b1)(n+ b2) · · · (n+ bq)

αz

n+ 1

where {−aj : 1 ≤ j ≤ p} are the zeros of the numerator and {−bj : 1 ≤ j ≤ q} are
the zeros of the denominator. The constant α comes from the leading coefficients
in the factorization of the rational function. The convention is to always include

the factor n! in the form of the series and write it as h(z) =
∞∑
n=0

un
zn

n!
. This can

be accomplished by adjusting the definition of un and it produces the term n + 1
in the denominator of (3.6). The notation is

(3.7) h(z) = pFq

(
a1 a2 · · · ap
b1 b2 · · · bq

∣∣∣αz) .
As a second example of the representation of an elementary function: the reader
can check directly that

(3.8)
ArcTan z

z
= 2F1

(
1
2 1

3
2

∣∣∣∣−z2

)
.

To get the power series expansion of ArcTan z, expand 1/(1 + z2) in a geometric
series and integrate term by term.
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The hypergeometric representation for the generating function f(z) in (3.1)
comes from identifying

(3.9) un =
n!

Cn

and the computation

(3.10)
un+1z

n+1

unzn
=

(n+ 1)(n+ 2)

n+ 1
2

z

4

from which one can read the zeros a1 = 1, a2 = 2, the poles b1 = 1
2 to obtain

(3.11) f(z) = 2F1

(
1, 2

1
2

∣∣∣∣z4
)
.

This confirms the evaluation given by Mathematica.

4. A simplification

Now that a hypergeometric expression for the generating function has been pro-
duced, it remains to explore the possibility of transforming it to simpler func-
tions. This is, in general, a complicated process. One more time, we return to
Mathematica for help.

The direct command produces the expected answer:

In[3]:= Hypergeometric2F1[1, 2, 1/2, z/4] // FunctionExpand // FullSimplify

Out[3]=
2

(z − 4)2

(
z + 8 +

12
√
z√

4− z
ArcCsc

[
2√
z

])
.

This can be expressed as

(4.1) f(z) =
2

(z − 4)4

(
z + 8 +

12
√
z√

4− z
ArcSin

(√
z

2

))
.

The singularity at z = 4, coming from the radius of convergence of the series, can
be seen in this formula.

The values stated in the problem now follow from this formula. An elementary
proof of (4.1) is presented next.

The first part of the argument is to produce a recurrence for the coefficients
1/Cn. This has already appeared in the computation of the ratio (3.10):

(4.2) (n+ 2)Cn+1 = 2(2n+ 1)Cn.

This yields

f(z) =

∞∑
n=0

zn

Cn
=

∞∑
n=0

2(2n+ 1)

n+ 2

zn

Cn+1

= 4

∞∑
n=0

zn

Cn+1
− 6

∞∑
n=0

zn

(n+ 2)Cn+1
.

The goal is to express the right-hand side in terms of f(z). As a first step, multiply
by z to obtain

zf(z) = 4

∞∑
n=1

zn

Cn
− 6

∞∑
n=1

zn

(n+ 1)Cn
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and multiplying by z one more time produces

z2f(z)− 4zf(z) + 4z = −6

∞∑
n=1

zn+1

(n+ 1)Cn
.

The second step is to eliminate the term n+ 1 in the denominator. This is accom-
plished by differentiation. It follows that

(4.3) z(z − 4)f ′(z) + 2(z + 1)f(z) = 2.

To solve this equation, multiply by the integrating factor (4− z)5/2z−1/2 to obtain

(4.4)
d

dz

(
f(z)(4− z)5/2z−1/2

)
= −2(4− z)3/2z−3/2.

A direct Mathematica evaluation (or the change of variables z = u2 and v = 2 sin θ)
gives

−
∫

2(4− z)3/2z−3/2 dz = 16(4− z)1/2z−1/2 + 2(4− z)1/2z1/2 + 24ArcSin

(√
z

2

)
.

Integrate the right-hand side of (4.4), checking that the implied constant of inte-
gration vanishes, to produce the following statement.

Theorem 4.1. The generating function of the reciprocal of Catalan numbers is
given by

(4.5) f(z) =
2(z + 8)

(4− z)2
+

24
√
z

(4− z)5/2
ArcSin

(√
z

2

)
.

Naturally, the length of a solution to a mathematical question depends on what
is assumed by the authors. Readers of this journal, who are familiar with [10], will
know the power series expansion

(4.6)

∞∑
n=0

z2n(
2n
n

) =
4

4− z2

[
1 +

zArcSin(z/2)√
4− z2

]
.

To obtain the generating function (4.5), replace z2 by z, multiply by z and differ-
entiate.

The evaluation of a series by a computer algebra system often produces answers
in terms of non-elementary functions. In the present problem, the authors wish
to report that a mistake in the typing of the series for f(x) gave an indication of
the nature of this function. Originally the fourth author used Mathematica and
obtained the evaluation

∞∑
n=1

zn

Cn
= −z(z − 10)

(4− z)2
+

24
√
z

(4− z)5/2
ArcSin

(√
z

2

)
.

The incorrect initial index lead us to simpler answers.

5. A direct evaluation of f(z)

The starting point of a proof can be crucial in determining its length. This section
presents an evaluation of the series (3.1) based on an integral representation for the
reciprocal of the central binomial coefficients

(5.1)
1(
2n
n

) =
n!n!

(2n)!
=

Γ2(n+ 1)

Γ(2n+ 1)
.
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This proof also appears in [13].
The basic connection

(5.2) B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)

with the beta function defined by

(5.3) B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt

yields

(5.4)
1(
2n
n

) = nB(n, n+ 1).

This identity appears in [4, Exercise 10.2.2, p. 193].

Summing (5.4) for n = 1, 2, · · · and interchanging the series with the integral
yields

∞∑
n=1

zn(
2n
n

) =

∞∑
n=1

nzn
∫ 1

0

tn(1− t)n dt
t

=

∫ 1

0

z(1− t) dt
[1− zt(1− t)]2

.

This last integral can be evaluated by partial fractions to produce (4.6). The
generating function (3.1) is now obtained as before.

6. A connection with the error function

This section presents another evaluation of the generating function f(z) in (1.1)
based on the the error function

(6.1) erf(z) =
2√
π

∫ z

0

e−t
2

dt

encountered by the reader in basic Probability courses.
The story begins with a modification of the generating function for f(z) defined

by

(6.2) h(z) =

∞∑
n=0

1

Cn

zn

n!
=

∞∑
n=0

(n+ 1)!

(2n)!
zn.

The relation between f(z) and h(z) is part of a general result of power series
described next.

The standard notation for the coefficient of zn in the expansion the power series
for a function R(z) is denoted by [zn]R. The next statement is of Laplace transform
type and it is obtained by term by term integration of the series on the right-hand
side.

Lemma 6.1. Assume

(6.3) A(z) =

∫ ∞
0

e−tB(zt) dt.

Then

(6.4) [zn]B = n!× [zn]A.
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Now apply this lemma to the function h(z) in (6.2) to obtain an expression for
f(z). The integral in (6.3) is evaluated first using a symbolic language. Indeed,
Mathematica produces

(6.5) h(z) = 1 +
z

4
+

1

8
ez/4
√
π z(z + 6) erf

(√
z

2

)
.

This can be verified using the expansion

(6.6) erf(z) =
2z√
π

1F1

(
1
2
3
2

∣∣∣∣−z2

)
.

Lemma 6.1 now gives

(6.7) f(z) =

∫ ∞
0

e−t
(

1 +
zt

4
+

1

8
ezt/4

√
πzt (zt+ 6) erf

(√
zt

2

))
dt.

The first two terms can be integrated in elementary terms. Make the change of vari-
ables u =

√
zt/2 and replace erf(u) by 1− erfc(u), where erfc is the complementary

error function and then introduce the notation

(6.8) Hn,m(b) =

∫ ∞
0

xne−bx
2

[erfc(x)]
m
dx.

After the computation of some elementary integrals (6.7) becomes

(6.9) f(z) = 1 +
z

4
+

12π
√
z

(4− z)5/2
− 4
√
π

z
[2H4,1(4/z − 1) + 3H2,1(4/z − 1)] .

The integrals Hn,m(b) have been discussed in [1]. It turns out that Hn,m(b) satisfies
the recurrence

(6.10) Hn,m(b) =
n− 1

2b
Hn−2,m(b)− m

b
√
π
Hn−1,m−1(b+ 1),

with initial conditions

(6.11) Hn,0(b) =
1

2
b−(n+1)/2Γ

(
n+ 1

2

)
and H0,1(b) =

Arctan
√
b√

πb
.

The recurrence produces

(6.12) H2,1(b) =
1

2b
√
π

(
Arctan

√
b√

b
− 1

b+ 1

)
and

(6.13) H4,1(b) =
1

b
√
π

(
3Arctan

√
b

4 b3/2
− 3

4b(b+ 1)
− 1

2(b+ 1)2

)
.

Actually (6.12) appears as entry 8.258.5 of [6] in the form

(6.14)

∫ ∞
0

e−bx
√
x erfc

√
x dx =

1√
π

(
Arctan

√
b

b3/2
− 1

b(1 + b)

)
.

There is a total of five entries in Section 8.258. All of them can be evaluated in
terms of the family Hn,m(b).
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In order to conclude with the evaluation of f(z), replace the values of H2,1 and
H4,1 in (6.9) to obtain

(6.15) f(z) =
2(6π
√
z + (z + 8)

√
4− z)

(4− z)5/2
− 24

√
z

(4− z)5/2
Arctan

( √
z√

4− z

)
.

This is equivalent to (4.5).

7. A probabilistic approach

This final section discusses a probabilistic approach to the evaluation of (3.1).
This point of view has been used in [15] to prove some binomial identities. It turns
out that this will produce a nice detour into the world of special functions. Some
background is presented first.

The continuous random variables X considered here have a probability density
function: this is a nonnegative function fX(x), such that

(7.1) Pr(X ≤ x) =

∫ x

−∞
fX(y) dy.

In particular, fX must have total mass 1. Thus, computations of probabilities
or related quantities, such as moments, can often be reduced to the evaluation of
integrals. For instance, the expectation of a measurable function h of the random
variable X is computed as

(7.2) Eh(X) =

∫ ∞
−∞

h(y)fX(y) dy.

The particular choice h(X) = Xn produces the n-th moment E(Xn). In elementary
courses, the reader has been exposed to normal random variables, written as X ∼
N(0, 1), with density

(7.3) fX(x) =
1√
2π
e−x

2/2, for x ∈ R,

and to exponential random variables, with probability density function

(7.4) fX(x;λ) =

{
λe−λx for x ≥ 0;

0 otherwise,

with λ > 0.
The arguments presented here use random variables with a gamma distribution

of shape parameter a > 0, written as X ∼ Γ(a). These are defined by the density
function

(7.5) fX(x; a) =

{
1

Γ(a)x
a−1e−x, for x ≥ 0;

0 otherwise.

Here Γ(s) is the classical gamma function, defined in (3.4). The exponential distri-
bution is the special case of the gamma distribution with shape parameter a = 1.

The evaluation of the generating function for the reciprocal of Catalan numbers
(3.1) is now obtained by this probabilistic approach.

Start with the expansion

(7.6) A(z) =

∞∑
n=0

zn

(2n)!
= cosh

√
z
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and take Γ1 and Γ2 two independent Gamma random variables with shape param-
eters 1 and 2, respectively. The corresponding density functions are

(7.7) fΓ1
(x) = e−x and fΓ2

(x) = xe−x,

with moments E[Γn1 ] = n! and E[Γn2 ] = (n + 1)!. The independence of Γ1 and Γ2

now produces E [(zΓ1Γ2)n)] = n!(n+ 1)!zn.
The random variable Γ = Γ1Γ2 has distribution

fΓ(x) =

∫ ∞
0

1

x1
fΓ1

(x1)fΓ2

(
x

x1

)
dx1

= x

∫ ∞
0

1

x2
1

e−(x1+x/x1) dx1

= 2
√
xK1(2

√
x),

where Kν(z) is the Bessel function with integral representation

(7.8) Kν(z) =
1

2

(z
2

)ν ∫ ∞
0

e−(t+z2/4t) dt

tν+1

appearing as entry 8.432.6 in [6]. Now

(7.9) f(z) = E
∞∑
n=0

(zΓ1Γ2)n

(2n)!
= E cosh

√
zΓ1Γ2

gives the generating function f(z) as a formidable integral

(7.10) f(z) =

∫ ∞
0

cosh(
√
zt)× 2

√
tK1(2

√
t) dt.

The simpler looking version

(7.11) f(z) =
1

2

∫ ∞
0

t2 cosh (γt)K1(t) dt, with γ = 1
2

√
z,

is obtained by the natural change of variables
√
t 7→ t.

The remainder of this section is dedicated to its evaluation. First observe that
Mathematica gives

(7.12)
1

2

∫ ∞
0

t2 cosh (γt)K1(t) dt =
2 + γ2

2(1− γ2)2
+

3γ

2(1− γ2)5/2
ArcSin γ

and, with γ =
√
z/2, this produces (4.6). Symbolic languages do perform.

The authors now propose the following challenge: produce a proof of the formula
(7.11) using only the formulas appearing in the table of integrals [6]. Aside from
promoting this table, the restriction is meant to reflect the way the authors work:
given an integral, the first step is to check if it appears in this table.

To begin with, the integral is a linear combination of entry 6.621.3:

(7.13)

∫ ∞
0

tµ−1e−αtKν(βt) dt =

√
π(2β)ν

(α+ β)µ+1

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1
2 )

2F1

(
µ+ ν, ν + 1

2

µ+ 1
2

∣∣∣∣α− βα+ β

)
,
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that in the special case µ = 3, ν = 1 and β = 1 gives

(7.14)

∫ ∞
0

t2e−αtK1(t) dt =
32

5(α+ 1)4 2F1

(
4, 3

2
7
2

∣∣∣∣α− 1

α+ 1

)
.

The relation coshu = 1
2 (eu+e−u) and the expression (3.11) show that the evaluation

of the generating function f(z) is equivalent to the hypergeometric identity

(7.15) 2F1

(
1, 2

1
2

∣∣∣∣z4
)

=

128

5

[
1

(
√
z + 2)4 2F1

(
4, 3

2
7
2

∣∣∣∣√z − 2√
z + 2

)
+

1

(
√
z − 2)4 2F1

(
4, 3

2
7
2

∣∣∣∣√z + 2√
z − 2

)]
.

The proof of this identity begins with the application of Pfaff’s formula to the
right-hand side. This is one of the most basic transformation rules for hypergeo-
metric functions and it states

(7.16) 2F1

(
a, b

c

∣∣∣∣x) = (1− x)−a2F1

(
a, c− b

c

∣∣∣∣ x

x− 1

)
.

It can be easily be deduced from the integral representation

(7.17) 2F1

(
a b

c

∣∣∣∣z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt,

appearing as entry 9.111 in [6]. In the current problem, this has the positive effect
of canceling the fourth powers and converts (7.15) into

(7.18) 2F1

(
1, 2

1
2

∣∣∣∣x) =
1

10

[
2F1

(
4, 2

7
2

∣∣∣∣1−√x2

)
+ 2F1

(
4, 2

7
2

∣∣∣∣1 +
√
x

2

)]
,

with z = 4x.
The proof presented here has been restricted to use only what can be found in

the table [6]. Therefore it is natural to search there for hypergeometric identities
that look like (7.18). There are not so many identities of this type in [6], but
fortunately entries 9.136.1 and 9.136.2 give

(7.19) 2F1

(
2a, 2b

a+ b+ 1
2

∣∣∣∣1±√x2

)
=

Γ(a+ b+ 1
2 )
√
π

Γ(a+ 1
2 )Γ(b+ 1

2 )
2F1

(
a, b

1
2

∣∣∣∣x)∓ 2
√
πx Γ(a+ b+ 1

2 )

Γ(a)Γ(b)
2F1

(
a+ 1

2 , b+ 1
2

3
2

∣∣∣∣x
)
.

And this is precisely what is needed . To prove (7.18) simply add both cases of (7.19)
with the special values a = 2 and b = 1. The proof of (7.19) is a direct consequence
of a basic hypergeometric identity [3, Formula 3.1.12, page 128]:

(7.20) 2F1

(
2a 2b

a+ b+ 1
2

∣∣∣∣z + 1

2

)
=

Γ(a+ b+ 1
2 )Γ( 1

2 )

Γ(a+ 1
2 )Γ(b+ 1

2 )
2F1

(
a b

1
2

∣∣∣∣z2

)
− z

Γ(a+ b+ 1
2 )Γ(− 1

2 )

Γ(a)Γ(b)
2F1

(
a+ 1

2 b+ 1
2

3
2

∣∣∣∣z2

)
.

The proof of the formula for the generating function of {1/Cn} is now complete.
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This section has shown that the evaluation of f(z), the generating function of
the reciprocal of Catalan numbers, is equivalent to the identity (7.18). Having es-
tablished this hypergeometric identity, the evaluation of f(z) has been established.
Now it is natural to a ask whether it is possible to prove (7.18) by expanding
both sides as power series and comparing coefficients of equal powers. A simple
calculation, left to the reader, shows that this is equivalent to

(7.21)
1

Cn
=

∞∑
k=2n

(4)k(2)k

5
(

7
2

)
k
k! 2k−2n

(
k

2n

)
,

for every n ∈ N. This brings us back to the reciprocal of Catalan numbers. This is
an unexpected turn of events. To finish our discussion, a direct proof of (7.21) is
presented next. The authors have been unable to find identities of this type in the
literature.

Denote the summand in (7.21) by f(n, k). In order to normalize the sum to start
at 0, write g(n, k) = f(n, k + 2n). Then

(7.22)
g(n, k + 1)

g(n, k)
=

(k + 2n+ 2)(k + 2n+ 4)

(k + 1)(2k + 4n+ 7)
.

The representation (3.6) now gives

(7.23)

∞∑
k=2n

(4)k(2)k

5
(

7
2

)
k
k! 2k−2n

(
k

2n

)
= g(n, 0) 2F1

(
2n+ 2 2n+ 4

2n+ 7
2

∣∣∣∣ 12) .
In order to complete the proof, one needs a formula for the hypergeometric function
at argument 1

2 . Now Gauss comes to the rescue. The required evaluation is his
second summation formula (see [3, p. 148], [12, formula 15.4.28], [16, Chapter XIV,
Exercise 13])

(7.24) 2F1

(
a b

1
2 (a+ b+ 1)

∣∣∣∣ 12) =
Γ( 1

2 ) Γ
(

1
2 (a+ b+ 1)

)
Γ
(
a+1

2

)
Γ
(
b+1

2

) .

Replacing in (7.23) and some slight simplification using Euler’s duplication formula

Γ
(
n+ 1

2

)
=

(2n)!
√
π

22n n!
yields the desired result (7.21). It is too bad that (7.24) does

not appear in [6]. It should definitely be included in the next edition.

8. Conclusions

A variety of methods have been used to prove formulas for the generating function
of the reciprocal of the Catalan numbers. These methods include traditional proofs,
some modern proofs based on algorithms included in symbolic languages and also
a proof based only on entries of a classical table of integrals. The authors hoped to
illustrate the usual ways in which they approach a problem.
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