
Seized Opportunities
Victor H. Moll

To Donald J. Newman, who knew
that integrals were fun.

E
very undergraduate student encounters

the evaluation of integrals at an early

stage of his/her education. In my case this

happened in a class at the Universidad

Santa Maria, Valparaiso, Chile. There, we

aspiring engineers were required to use the CRC

Table [27]. This note tells the story of a series

of fortunate encounters that have introduced the

author to the wonderful world of the evaluation

of integrals. The reader will see that there are

very interesting questions left even in apparently

elementary parts of mathematics. Many of the

results contained here are on the author’s website

http://www.math.tulane.edu/∼vhm.

The main character of this paper is a sequence

of rational numbers

(1) dl,m = 2−2m

m∑

k=l
2k
(

2m − 2k

m− k

)(
m + k
m

)(
k

l

)
,

m ∈ N and 0 ≤ l ≤m,

that appeared in the evaluation of the quartic

integral

(2) N0,4(a;m) =
∫∞

0

dx

(x4 + 2ax2 + 1)m+1
.

This is a remarkable sequence, connected to many

interesting questions. The recent advances in com-

munications and the possibility of fast search on

literature have accelerated collaborations in math-

ematics. The study of the properties of {dl,m} has
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led the author to many rewarding and unexpected

collaborations.1

The Evaluation of Integrals
Elementary mathematics leaves the impression

that there is a marked difference between the two

branches of calculus. Differentiation is a system-

atic subject: every evaluation is a consequence of

a number of established rules and basic exam-

ples. However, integration is a mixture of art and

science. The successful evaluation of an integral

depends on the right approach, the right change

of variables or a patient search in a table of inte-

grals. In fact, the theory of indefinite integrals of

elementary functions is complete [11]. Risch’s al-

gorithm determines whether a given function has

an antiderivative within a given class of functions.

For example, this theory shows that if f and g

are rational functions with g(x) nonconstant, then

f (x)eg(x) has an elementary primitive precisely

when f (x) = R′(x) + R(x)g′(x) for some rational

function R. In particular e−x
2

has no elementary

primitive—a well-known fact.

However, the theory of definite integrals is far

from complete, and there is no general theory

available. The nature of the constant in the eval-

uation of a definite integral is hard to predict, as

seen in the example

(3)

∫∞

0
e−x dx = 1,

∫∞

0
e−x

2
dx =

√
π

2
,

and

∫∞

0
e−x

3
dx = Γ

(
4

3

)
.

1The author wishes to thank Dante V. Manna for remarks

on an earlier version of the paper and the partial support

of NSF-DMS 0070567.
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The first integrand has an elementary primitive,

the second integral is the classical Gaussian, and

the evaluation of the third requires Euler’s gamma

function defined by

(4) Γ(a) =
∫∞

0
xa−1e−x dx.

Interesting numbers emerge from elementary ma-

nipulations of integrals. To wit, differentiating (4)

at a = 1 yields the numerical constant

(5)

∫∞

0

e−x log xdx = −γ

known as the Euler’s constant, defined by γ =

lim
n→∞




n∑

k=1

1

k
− logn


. Havil’s book [16] is devoted

to the story of this intriguing constant.

Another illustration of the deceptiveness of

definite integrals is the fact that

(6)

∫∞

−∞

dx

(ex − x− 1)2 +π2
= 1

2

isobtainedbyelementarymethods,but the similar-

looking integral

(7)

∫∞

−∞

dx

(ex − x)2 +π2

is given by (1−W(1))−1, where W(z) is the Lam-

bert W-function, defined as the solution to the

transcendental equation xex = z. It is unknown

whether this integral has a simpler analytic repre-

sentation, but experts believe it is unlikely that it

does.

In this note, the reader will find some of the

mathematics behind the evaluation of definite

integrals. Most of the results are quite elementary,

but be mindful if somebody asks you to compute

an integral: if ζ(s) denotes the classical Riemann

zeta function, V. V. Volchkov [26] has shown that

establishing the exact value

(8)∫∞

0

(1− 12t2)

(1+ 4t2)3

∫∞

1/2
log |ζ(σ + it)|dσ dt= π(3− γ)

32

is equivalent to the Riemann hypothesis. Evaluat-

ing (8) might be hard.

It remains to explain why we evaluate integrals.

This paper gives some anecdotal answers. The

general response is that these questions lead

to challenging problems that do not require an

extensive background, which have provided inspi-

ration for interesting student research projects

[5, 6]. In addition, the computation of integrals

has been shown to be connected to many parts of

mathematics.

Once in a while, a nice evaluation produces a

beautiful proof. For example,

(9)

∫ 1

0

x4(1− x)4
1+ x2

dx = 22

7
−π

proves that π ≠
22

7
. This evaluation, which has a

long history, is used by H. Medina [21] to produce
reasonable approximations to tan−1 x and has been
revisited by S. K. Lucas in [19]. The latter contains,
among many interesting results, the identity

(10)

∫ 1

0

x5(1− x)6(197+ 462x2)

530(1 + x2)
dx = π − 333

106

that exhibits the relation of π to its second
continued fraction approximation.

To explain our motivation, we adapt a quote
from George Mallory, when asked about climb-
ing Everest. We evaluate integrals because they are
there.

The mathematical point of view described here
is the author’s perspective of experimental math-
ematics. Supplementary accounts are given by
D. H. Bailey and J. M. Borwein in [2] and also by
D. Zeilberger in his interview [14].

A Graduate Student
A version of this story has already been told in
[22]. George Boros (1947-2003) came to my office
one day, stating that he could evaluate the integral

(11) N0,4(a;m) =
∫∞

0

dx

(x4 + 2ax2 + 1)m+1
.

His result says: for a > −1 and m ∈ N, we have

(12) N0,4(a;m) = π

2m+3/2 (a+ 1)m+1/2
Pm(a),

where Pm is a polynomial of degreem, written as

(13) Pm(a) =
m∑

l=0

dl(m)a
l ,

and

dl,m =
l∑

j=0

m−l∑

s=0

m∑

k=s+l

(−1)k−l−s

23k

(
2k

k

)(
2m+ 1

2(s + j)

)

(
m− s − j
m − k

)(
s + j
j

)(
k− s − j
l − j

)
,

from which it follows that dl(m) is a rational
number.

The proof is elementary and is based on the
change of variables x = tanθ, and then George
had the clever idea of doubling the angle; that is,
introducing a new variable u = 2θ. This yields a
new form for the integral (11) and the expression
for dl(m). The double angle substitution is the
basic idea behind the new theory of rational
Landen transformations. The reader will find in
[20] a recent survey on this topic.

Having no experience in special functions, my
reaction to this result was that (i) a symbolic
language like Mathematica or Maple must be able
to do it, (ii) there must be a simpler formula for
the coefficients dl,m, and (iii) it must be known.

It was surprising to find out that the Mathe-
matica version available at that time was unable
to compute (11) when a and m are entered as
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parameters. The symbolic status of N0,4(a;m)

has not changed much since it was reported in

[22]. Mathematica 6.2 is still unable to solve this

problem.

On the other hand, the corresponding indefinite

integral is evaluated in terms of the Appell-F1

function, defined by

(14) F1(a;b1, b2; c;x, y) :=
∞∑

m=0

∞∑

n=0

(a)m+n(b1)m(b2)n

m!n!(c)m+n
xmyn,

as
∫

dx

(x4 + 2ax2 + 1)m+1

= xF1

[
1

2
,1+m,1+m, 3

2
,− x

2

a+
,− x

2

a−

]
,

where a± := a ±
√
−1+ a2. Here (a)k =

a(a + 1) · · · (a + k − 1) is the ascending fac-

torial. This clarifies my reaction (i) and also makes

the point that the evaluation of integrals, with the

help of a symbolic language, is a natural guide

into the field of special functions.

The search for a simpler formula started with

the experimental observation that, in spite of the

alternating signs in the formula for dl,m, these

coefficients are all positive. It took us some time

to find

(15) dl,m = 2−2m

m∑

k=l
2k
(

2m− 2k

m− k

)(
m+ k
m

)(
k

l

)
.

The first proof is based on the mysterious appear-

ance of the integral N0,4(a,m) in the expansion

(16)
√
a+

√
1+ c

=
√
a+ 1+ 1

π
√

2

∞∑

k=1

(−1)k−1

k
N0,4(a;k− 1)ck.

George figured out how to use Ramanujan Master’s

Theorem [3] to produce (15). The author asked him

many times to explain his train of thought leading

to this connection. There was never a completely

logical path: He simply knew how to integrate.

The expression

(17)

Pm(a) = 2−2m

m∑

k=0

2k
(

2m− 2k

m− k

)(
m+ k
m

)
(a+ 1)k

shows that the polynomial Pm(a) is an example of

the classical Jacobi family

(18)

P (α,β)m (a)

:=
m∑

k=0

(−1)m−k
(
m + β
m − k

)(
m+ k+α+ β

k

)(
a + 1

2

)k

with parametersα =m+ 1

2
and β = −(m+ 1

2
). The

parameters α and β, usually constants, are now
dependent uponm. We were surprised not to find
an explicit evaluation forN0,4(a;m) in [15]. It turns
out that this integral appears in an equivalent form
as entry 3.252.11. This is the answer to (iii).

A Conference at Penn State or How I Got
Erdős Number 2
It was then important to present our results in
public. We decided to volunteer a talk at a con-
ference. A special one celebrating Basil Gordon’s
sixty-fifth birthday was being organized at Penn

State.2 Trying to find a way to close my talk with
a question in number theory, it occured to me to
describe a new formula for dl,m . The idea behind
it is simple: write (12) as

(19) Pm(a) = 2

π
[2(a + 1)]

m+ 1

2 N0,4(a;m)

and compute dl,m from the Taylor expansion at
a = 0 of the right-hand side. This yields

(20) dl,m =
1

l!m!2m+l

[
αl(m)

m∏

k=1

(4k− 1)

− βl(m)
m∏

k=1

(4k+ 1)

]
,

where αl and βl are polynomials inm of degrees l
and l−1, respectively. The last transparency from
my talk contained the formula

(21) d1,m = 1

m! 2m+1

[
(2m + 1)

m∏

k=1

(4k− 1)

−
m∏

k=1

(4k− 1)

]

and the observation that the numerator is an even
number, so it might be of interest to find out the
exact power of 2 that divides it, that is, its 2-adic
valuation ν2(dl(m)). ( For a prime p, writem = par
where p does not divide r . Then the integer a is
the p-adic valuation of m, denoted by νp(m)).

A short time later, I received a fax from Jeffrey
Shallit stating that he had established the result

(22) ν2(d1(m)) = 1−2m+ν2

((
m + 1

2

))
+S2(m),

where S2(m) is the sum of the binary digits
of m. Revista Scientia is a journal produced by
the Department of Mathematics at Universidad
Santa Maria, Valparaiso, Chile, my undergraduate
institution. This was perfect timing: there was
going to be a special issue dedicated to the memory
of Miguel Blazquez, one of my undergraduate
teachers. The results of the valuation of d1,m

appeared in [7].

2The author wishes to use this occasion to thank the

organizers for the chance to speak there.
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The polynomials αl and βl do not have simple
analytic expressions. One uninspired day, we de-
cided to compute their roots numerically. We were
pleasantly surprised to discover the following:

Theorem 4.1. For all l ≥ 1, all roots of αl(m) = 0

lie on the line Rem = − 1

2
. Similarly, the roots of

βl(m) = 0 for l ≥ 2 lie on the same vertical line.

The first step in the proof of this theorem
took place at lunch during the 2000 Summer
Institute for Mathematics for Undergraduates at
the University of Puerto Rico at Humacao. John
Little was a guest speaker, and he is enthusiastic
about problems involving polynomials. The result
of that conversation is a series of email exchanges
in which the details of the proof of Theorem 4.1
were explained to me. The location of the zeros
of αl(m) now suggest studying the behavior of
this family as l → ∞. In the best of all worlds,
one will obtain an analytic function of m with all
the zeros on a vertical line. Perhaps some number
theory will enter and…there is no telling what will
happen.

The Gradshteyn and Ryzhik Project
The problem of analytic evaluations of defi-
nite integrals has been of interest to scientists
since integral calculus was developed. The central
question is, loosely stated:

Given a class of functions F and an interval
[a, b] ⊂ R, express the integral of f ∈ F

I =
∫ b

a
f (x)dx

in terms of the special values of functions from an
enlarged class G.

The theory in the case of indefinite integrals
is well developed. For instance, by elementary
arguments it is possible to show that if F is the
class of rational functions, then the enlarged class
G is obtained by including logarithms and inverse
trigonometric functions. In the 1980s G. Cherry
discussed extensions of this classical paradigm.
The following example illustrates the relevant
issues in describing G: we can evaluate
(23)∫

x3 dx

log(x2 − 1)
= 1

2
li(x4 − 2x2 + 1)+ 1

2
li(x2 − 1),

but

(24)

∫
x2 dx

log(x2 − 1)

cannot be written in terms of elementary functions
and the logarithmic integral

(25) li(x) :=
∫
dx

log x

that appears in (23). The reader will find in [11]
the complete theory behind integration in terms
of elementary functions.

On the other hand, the theory of definite in-

tegrals is less developed. Examples are evaluated

by a series of ad hoc procedures and have been

collected in tables. The earliest volume available

to the author is Tables d’integrales definies [4],

compiled by Bierens de Haan, who also presented

in 1862 a survey of the methods employed in

the verification of the entries. These tables form

the main source for the popular volume by I. S.

Gradshteyn and I. M. Ryzhik [15]. There are many

other interesting tables of integrals, from the one

by A. Apelblat, small and beautiful, to the five-

volume compendium by A. P. Prudnikov et al.,

encyclopedic and very expensive. The choice of

[15] is a popular compromise.

Once the author realized that there was inter-

esting mathematics encoded in formula 3.252.11

of [15] that gave (11), we began to wonder what else

was in that table. Perhaps it would be a good idea

to verify every formula in it by hand, since most

entries cannot be evaluated symbolically. This has

proven to be a larger task than originally thought.

The author has begun a systematic verification of

the entries in [15], and the proofs have appeared

in Revista Scientia.

Given the large number of entries in [15], we

have not yet developed an order in which to check

them. Once in a while an entry catches our eye.

This was the case with entry 3.248.5 in the sixth

edition of the table by Gradshteyn and Ryzhik.

The presence of the double square root in the

appealing integral

(26)

∫∞

0

dx

(1+ x2)3/2
[
ϕ(x)+ √ϕ(x)

]1/2 =
π

2
√

6
,

with

(27) ϕ(x) = 1+ 4x2

3(1+ x2)2
,

reminded us of (16). Unfortunately (26) is incor-

rect. The numerical value of the left-hand side is

approximately 0.666377, and the right-hand side

is about 0.641275. The table [15] is continually

being revised. After we informed the editors of

the error in 3.248.5, it was taken out. There is no

entry 3.248.5 in [15]. At the present time, we are

still reconciling this formula.

The revision of integral tables is nothing new.

C. F. Lindman compiled in 1891 a long list

of errors from the table by Bierens de Haan

[4]. The editors of [15] maintain the webpage

http://www.mathtable.com/gr/, where the cor-

rections to the table by I. S. Gradshteyn and I. M.

Ryzhik are stored.

Integral tables are organized like a phone book:

entries that look similar are placed together. How-

ever, the fact that two integrals are close in the
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table is not a reflection of the techniques involved

in their evaluation. For example, 4.229.4 gives

(28)

∫ 1

0
log

(
log

1

x

)(
log

1

x

)µ−1

dx = ψ(µ)Γ(µ),

for Reµ > 0, and 4.229.7 states that

(29)∫ π/2

π/4
log log tanxdx = π

4

(
4 log Γ

(
3

4

)
− logπ

)
.

Indeed, the formula (28) is established by the

change of variables v = − log x followed by dif-

ferentiating the gamma function (4) with respect

to the parameter µ. The function ψ(µ) in (28)

is simply the logarithmic derivative of Γ(µ), and

the formula has been checked. The situation is

quite different for (29). This formula is the subject

of the elegant paper [25], in which the author

uses analytic number theory to check its validity.

The ingredients of the proof are quite formidable:

I. Vardi shows that

(30)

∫ π/2

π/4
log log tanxdx = d

ds
Γ(s)L(s)

∣∣∣
s=1
,

where L(s) = 1− 1

3s
+ 1

5s
− 1

7s
+· · · is the Dirichlet

L-function. The computation of (30) is done in

terms of the Hurwitz zeta function

(31) ζ(q, s) =
∞∑

n=0

1

(n+ q)s ,

defined for 0 < q < 1 and Re s > 1.

Vardi’s technique has been extended in Luis

Medina’s Ph.D. thesis at Tulane. Examples of

integrals evaluated there include

(32)∫∞

0
log x log tanhxdx = γπ

2

8
− 3

4
ζ′(2)+ π

2 log 2

12
,

and
∫ 1

0
log(1+ x+ x2) log log 1/x

dx

x
(33)

= −γ π
2

9
+ 1

18
π2 log 3+ 2

3
ζ′(2).

A Productive Trip to Chile

During the summer of 1999 I was invited to lecture

on integrals at Universidad Santa Maria. During the

presentation of Vardi’s method using the Hurwitz

zeta function to evaluate (28), Olivier Espinosa

mentioned that this function plays a role in the

problem of a gas of noninteracting electrons in

the background of a uniform magnetic field. For

instance, it is shown that the density of states g(E),

in terms of which all thermodynamic functions

are to be computed, is written as

(34) g(E) = V 4π

h3
(2e�B)1/2EH1/2

(
E2 −m2

2e�B

)
,

where V stands for volume and B for magnetic

field,m is the electron mass,� is Planck’s constant,

e is the electron charge, and

(35) Hz(q) := ζ(z, {q})− ζ(z, q + 1)− 1

2
q−z ,

with {q} the fractional part of q. The Hurwitz

zeta function also appears in the evaluation of

functional determinants and many other parts of

mathematical physics [13].

The function log Γ(x) makes its appearance

through Lerch’s formula

(36)
d

dz
ζ(z, q)

∣∣∣
z=0

= log Γ(q)− log
√

2π.

The first few formulas are evaluated symbolically:
∫ 1

0
q log Γ(q)dq = ζ

′(2)
2π2

+ 1

3
log

√
2π − γ

12
,

∫ 1

0
q2 log Γ(q)dq = ζ

′(2)
2π2

+ζ(3)
4π2

+1

6
log

√
2π− γ

12
,

∫ 1

0
q3 log Γ(q)dq = ζ

′(2)
2π2

+3ζ(3)

8π2
− 3ζ′(4)

4π4

+ 1

10
log

√
2π − 3γ

40
.

My favorite unevaluated integral is, without a

doubt, one that is related to Euler’s result

(37)

∫ 1

0
log Γ(q)dq = log

√
2π.

Using Lerch’s formula and an expression for

the product of two Hurwitz zeta functions, we

obtained

(38)
∫ 1

0
log

2Γ(q)dq= γ
2

12
+π

2

48
+1

3
γlog

√
2π+4

3
log

2
√

2π

− (γ + 2 log
√

2π)
ζ′(2)

π2
+ ζ

′′(2)

2π2
.

The obvious next step would be to evaluate

(39) L3 :=
∫ 1

0
log

3 Γ(q) dq.

We have been unable to do this, but this question

has interesting connections with multiple zeta

values of the form

(40) T(a, b, c) =
∞∑

n=1

∞∑

m=1

1

namb(n+m)c .

The book [8] has a nice introduction to these sums.

This encounter in Chile began a fruitful col-

laboration. Olivier, who studies particle physics

for a living, now spends his free time thinking

about integrals. Evaluating integrals will take you

to unexpected places.
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Figure 1. The zeros of Pm(a)Pm(a)Pm(a). Figure 2. The scaled zeros of
Pm(a)Pm(a)Pm(a).

Combinatorial Aspects of the
Coefficients dl,m
Now we return to the coefficients dl,m in (15).
Fixing m and plotting the list {dl,m : 0 ≤ l ≤
m} reveals their unimodality. Recall that a finite
sequence of real numbers {x0, x1, . . . , xm} is said

to be unimodal if there exists an index m∗ such
that xj increases up to j = m∗ and decreases

from then on, that is, x0 ≤ x1 ≤ · · · ≤ xm∗ and
xm∗ ≥ xm∗+1 ≥ · · · ≥ xm. A polynomial is said

to be unimodal if its sequence of coefficients is
unimodal. Unimodal polynomials arise often in

combinatorics, geometry, and algebra.
The unimodality of the coefficients dl,m follows

directly from the representation (17) and the next
theorem.

Theorem 7.1. If P(x) is a polynomial with pos-

itive nondecreasing coefficients, then P(x + 1) is
unimodal.

A condition stronger than unimodality is log-
concavity. A sequence of positive real numbers
{x0, x1, · · · , xm} is said to be logarithmically con-

cave (or logconcave for short) if xj+1xj−1 ≥ x2
j

for 1 ≤ j ≤ m − 1. It is easy to see that if a
sequence is logconcave then it is unimodal. Ex-
tensive computations showed that the sequence

{dl,m : 0 ≤ l ≤ m} was logconcave. This question
leads us to the study of the zeros of the polynomial

Pm(a). It turns out that if all the zeros of a poly-
nomial are real and negative, then it is logconcave

and therefore unimodal. Unfortunately Pm has the
minimal possible number of real zeros: 0 if m is

even and 1 if odd. Figure 1 plots these zeros for
1 ≤ m ≤ 100 and Figure 2 plots the zeros of Pm
divided by the corresponding degree.

A remarkable result of Dimitrov [12] shows

that the zeros of Pm(a) divided by the degree
m converge to the left half of the lemniscate of

Bernoulli given by the polar equation r 2 = 2 cos 2θ,
for θ ∈ (3π/4, 5π/4). This is reminiscent of the
phenomena observed by Polya for the zeros of the

partial sums of the exponential function.
The unimodality of dl,m was relatively easy to

show. The fact that dl,m was logconcave turned

out to be considerably more difficult, and its proof

came from an unexpected source [17]. Starting

with the triple sum

(41) dl,m =
∑

j,s,k

(−1)k+j−l

23(k+s)

(
2m + 1

2s

)

·
(
m− s
k

)(
2(k+ s)
k+ s

)(
s

j

)(
k

l − j

)
,

the authors used the RISC package MultiSum to

produce the recurrence

(42)

2(m+1)dl,m+1 = 2(l+m)dl−1,m+ (2l+4m+3)dl,m

that implies the positivity of dl,m . The next

recurrence derived in automatic fashion is

(43) (m + 2− l)(m + l − 1)dl−2,m − (l − 1)

· (2m + 1)dl−1,m + (l − 1)ldl,m = 0.

This enabled them to identify Pm(a) as a Jacobi

polynomial. Finally, using the method of cylindri-

cal algebraic decomposition, the authors produced

the inequality

(44) dl,m+1 ≥
4m2 + 7m + l + 3

2(m+ 1− l)(m+ 1)
dl,m

that implies the logconcavity of dl,m.

Define the operator L(aj) := a2
j − aj−1aj+1 so

that a logconcave sequence a is one such that

a := {an : n ∈ N} and L(a) are positive. A se-

quence is called infinitely logconcave if it remains

positive after applying L any number of times. We

have conjectured that {dl,m : 0 ≤ l ≤ m} is infi-

nitely logconcave. A remarkable result that implies

infinite logconcavity for a sequence {an} is the sub-

ject of a preprint by Petter Brändén [9]: it is shown

that if the polynomial anz
n + an−1z

n−1 + · · · + a0

has only real and negative zeros, then the same

holds for the polynomial produced by replacing

ak by a2
k−ak−1ak+1. This does not apply directly to

the coefficients dl,m considered here, but it proves

that the binomial coefficients {
(
m

l

)
: 0 ≤ l ≤ m}

are infinitely logconcave.
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Figure 3. The valuation of A3,mA3,mA3,m.
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Figure 4. The valuation of A59,mA59,mA59,m.

The p-adic Point of View
In this last section we go back to divisibility ques-
tions for the sequence dl,m . The generalization of
(22) was obtained in joint work with T. Amde-
berhan and D. Manna during the post-Katrina

semester3 when we were all on sabbatical out of
necessity.

It is convenient to introduce some rescaling of
dl,m given by

(45)

Al,m := l!m!2m+ldl,m

= l!m!

2m−l

m∑

k=l
2k
(

2m− 2k

m− k

)(
m+ k
m

)(
k

l

)
.

The pictures of the 2-adic valuations of Al,m
become increasingly complicated as l increases.
Figure 3 shows l = 3 and Figure 4 shows l = 59.
It was surprising to find out that the valuation
of Al,m is intimately linked to the Pochhammer
symbol (a)k = a(a + 1) · · · (a + k − 1) in a very
simple manner.

Theorem 8.1. The 2-adic valuation of Al,m satisfies

(46) ν2(Al,m) = ν2((m + 1− l)2l)+ l.
This result is now obtained in completely

automatic fashion. Define the numbers

(47) Bl,m := Al,m

2l(m + 1− l)2l
.

3The author wishes to thank the Courant Institute for its

hospitality during that period.

It is required to prove that Bl,m is odd. The

WZ-method [23] provides the recurrence

(48) Bl−1,m = (2m + 1)Bl,m − (m − l)
(m+ l + 1)Bl+1,m,1 ≤ l ≤m − 1.

Since the initial values Bm,m = 1 and Bm−1,m =
2m+1 are odd, it follows thatBl,m is an odd integer.
There is also a genuine computer-free proof of this

result. The point of view of the author is that we
use all the tools available to us. Experimenting
with the computer is here to stay.

In view of the complexities seen in Figures 3

and 4 it was a remarkable surprise when Xinyu
Sun told me that he had an exact formula for
the 2-adic valuation of Al,m . To describe it, we
associate to each index l a labeled binary tree T(l)

that encodes the 2-adic information of Al,m. This
is the decision tree for l (Figure 5). It is sufficient to
consider l odd. Vertices of degree 1 will be called
terminal. The description of T(l) is remarkably
simple. The first generation of T(l) that contains

terminal vertices is given by k∗(l) = ⌊log2 l⌋, and

there are precisely 2k
∗+1−l terminal vertices there.

The tree T(l) has one more generation consisting

of 2(l−2k
∗
) terminal vertices. There is also a well-

defined mechanism to label the terminal vertices
(involving valuations of factorials).

root

2m 2m−1

4m 4m−2 4m−3

8m 13

4m−1

14
8m−4 13

16 16

Figure 5. The decision tree for l = 5l = 5l = 5.

The explicit formula for ν2(A5,j) is given by
(49)

ν2(A5,2j) =





14+ ν2

(
j+2

4

)
if j ≡ 2 mod 4,

13+ ν2

(
j+1

4

)
if j ≡ 3 mod 4,

13+ ν2

(
j+3

4

)
if j ≡ 1 mod 4,

16+ ν2

(
j

8

)
if j ≡ 0 mod 8,

16+ ν2

(
j+4

8

)
if j ≡ 4 mod 8,

for even indices. The odd index case is obtained
from the relation ν2(A5,2j+1) = ν2(A5,2j).

The analysis for the prime 2 seems rather com-
plete, but what about odd primes? A symbolic

calculation shows that νp(Al,m) grows linearly
with m. Moreover, the slope is conjectured to be
1/(p − 1). The error term for p = 5 is shown in
Figures 6 and 7 for Al,m with l = 3 and l = 4, re-

spectively. An analytic description might produce
some more insight into this sequence.
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Figure 6. The error term
ν5(A3,m)−m/4ν5(A3,m)−m/4ν5(A3,m)−m/4.
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Figure 7. The error term
ν5(A4,m)−m/4ν5(A4,m)−m/4ν5(A4,m)−m/4.

The question of evaluation of definite integrals

has taken us into a journey full of mathematical

surprises. Many of them would not have been

possible without the help of symbol manipulation

software. We conclude with figures illustrating two

instances of experimental mathematics:

(1) The presence of the function S2(n) in formula

(22) led us to work of T. Lengyel [18] on the 2-adic

valuation of Stirling numbers of the second kind

S(n, k). These numbers have been around for a

long time, so we expected everything to be known

about them. The next four figures show a small

sample of the graph of ν2(S(n, k)) with k fixed.

The case k = 5 has been analyzed [1], but the

problem for k ≥ 6 is completely open.

(2) The special case p = 3 of the sequence

(50) Tp(n) :=
n−1∏

j=0

(pj + 1)!

(n+ j)! ,

appears as the number of n by n alternating sign

matrices. The wonderful book [10] tells the story

of this sequence. A seminar at Tulane devoted

to this question led to the exploration of p-adic

properties of these numbers. Figure 12 shows the

graph of the 2-adic valuation of T3(n) and Figure

13 the corresponding 3-adic valuation. The struc-
ture observed in these graphs is now beginning
to be explored, and only Figure 12 is well under-

stood [24]. There are many interesting questions
regarding Tp(n). We leave the reader with the most
natural one: what do these numbers count?

During the social parts at mathematical gather-
ings, the most common beginning of conversations
is: What do you do? The author frequently encoun-

ters surprised faces when he states: I compute
integrals. Perhaps this note has provided the

reader a clearer response.
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