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The integrals in Gradshteyn and Ryzhik.
Part 2: Elementary logarithmic integrals

Victor H. Moll

ABSTRACT. We describe methods to evaluate elementary logarithmic integrals.
The integrand is the product of a rational function and a linear polynomial in
Inz.

1. Introduction

The table of integrals by I. M. Gradshteyn and I. M. Ryzhik [3] contains a large
selection of definite integrals of the form

(1.1) /bR(x) In™ z de,

where R(z) is a rational function, a, b € R and m € N. We call integrals of the form
(1.1) elementary logarithmic integrals. The goal of this note is to present methods to
evaluate them. We may assume that a = 0 using

(1.2) /abR(x) In"™ 3 do = /ObR(a:) In"™ 2 da — /O(LR(a:) "™ 2 da.

Section 2 describes the situation when R is a polynomial. Section 3 presents the
case in which the rational function has a single simple pole. Finally section 4 considers
the case of multiple poles.

2. Polynomials examples

The first example considered here is

(2.1) I(P;b,m) :== /Ob P(z) n™ x dx,
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where P is a polynomial. This can be evaluated in elementary terms. Indeed,
I(P;b,m) is a linear combination of

b
(2.2) / 27 In™ z d,
0

and the change of variables x = bt yields

b m 1
(2.3) / 2™ wde =Y (’Z) 1n’”*’“b/ 7 In" ¢ dt.
0 =0 0

The last integral evaluates to (—1)*k!/(j + 1)k*! either an easy induction argument
or by the change of variables t = e~ that gives it as a value of the gamma function.

Theorem 2.1. Let P(x) be a polynomial given by

(2.4) P(z) =) aa’.
j=0

Then
m b]—i—l

b m
(2.5) I(P;b,m) ;:/0 P(x)lnmxdxzz:(—mk!(k)l m=kp Zaj TR

k=0

This expression shows that I(P;b,m) is a linear combination of bj In” b, with 1 <7 <
1+ p(=1+deg(P)) and 0 < k < m.

3. Linear denominators

We now consider the integral
b
Inzdx
3.1 byr) =
(31) fnr) = [ 225
for b, r > 0. This corresponds to the case in which the rational function in (1.1) has
a single simple pole.
The change of variables x = rt produces
b b/r
Inzdx Intdt
3.2 =Ilnrin(l+0b .
(32) | —mewa e+ [0

Therefore, it suffices to consider the function

b
(3.3) g(b) = / Intdt,

1+¢

as we have
b b
(3.4) f(b;r) =Inr In (1—1—;) +g<;> .

Before we present a discussion of the function g, we describe some elementary
consequences of (3.2).
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Elementary examples. The special case r = b in (3.2) yields

b 1
1
(3.5) / dz :1n21nb—|—/ ntd
0 T + b 0 ]. + t
Expanding 1/(1 + t) as a geometric series, we obtain
1 2
Intdt 1 s
: =—2(2) = ——.
(36) /0 s MO A

This appears as 4.231.1 in [3]. Differentiating (3.2) with respect to r produces
b
Inxd In(b 1 bInbd
/ nxx__n(—l—r)_'_ﬂ_’_in
0

(3.7) (x+71)2 r r r(r+b)

As b, r — 1 we obtain
1
Inxzd
(3.8) / I 2.
o (I+x)
This appears as 4.231.6 in [3]. On the other hand, as b — co we recover 4.231.5 in
[3]:

* lnzdx Inr
(3:9) /0 (z+r)2

The polylogarithm function. The evaluation of the integral

b

Intdt
1 b= | ——
(3.10) g(b) /01“7

requires the transcendental function
(3.11) Lin(2) =) =
k=1

This is the polylogarithm function and it has also appeared in [5] in our discussion of
the family

© In"zdr
3.12 hn(a) := —————— neR,a>0.
( ) (a) /0 (x—1)(z+a)
In the current context we have n = 2 and we are dealing with the dilogarithm function:

Lemma 3.1. The function g(b) is given by

(3.13) g(b) =Inb In(1 + b) + Lis(—b).
PRrROOF. The change of variables t = bs yields
YInsds
14 =Inb In(1 .
(3.14) g(b) =1Inb In( +b)—|—/0 T s

Expanding the integrand in a geometric series yields the final identity. O
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Theorem 3.2. Let b, » > 0. Then

b
(3.15) / medr b (b”) +Liy <—9> .
o T+ r r

Corollary 3.3. Let b > 0. Then

b 2

Inx dx s
3.16 =In2Inb—- —.
(3.16) /0 P T

PROOF. Let r — b in Theorem 3.2 and use

2
(317) L12

O

The expression in Theorem 3.2 and the method of partial fractions gives the
explicit evaluation of elementary logarithmic integrals where the rational function has
simple poles. For example:

Corollary 3.4. Let 0 < a < b and 71 # ro € RT. Then, with r = ro — 7, we
have
b
/ Inxdz _ [1nbln (rg(b+r1)>+1naln (rl(a—krg))} n
o (@+r)(z+7m2) r1(b + 72) ro(a+11)
() () w2 2)]
1 T r2 r2

_|_
The special case a = r1 and b = ry is of interest:

R A

Corollary 3.5. Let 0 < a < b. Then

b
/ (x jij(iﬁ_ b) = i a [In(adb)In(a + b) — In21n(adb) — 21na Ind]

+ bia [—2Lig(—1)+Lig (—9> +L12( Z)] .

The integral in Corollary 3.5 appears as 4.232.1 in [3]. An interesting problem is
to derive 4.232.2

(3.18) /DO( Inxdx _lnzu—ln2v
0

r+u)(r+v) 2(u—0)
directly from Corollary 3.5.

We now present an elementary evaluation of this integral and obtain from it an
identity of Euler. We prove that

/b Inxdx _ Inab ) (a+0b)?
a ( '

(3.19) r+a)(z+b)  2(b—a) b
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PROOF. The partial fraction decomposition

1 B 1 1
(x+a)(z+b)  b—a\r+a xz+b)’
reduces the problem to the evaluation of

b b
Inz d Inz d
I1:/ ne xandfgz/ ne x.
. THa o T+Db

The change of variables © = at gives, with ¢ = b/a,

I - / In(at) dt
1

1+t
¢ dt ¢ Int
= 1 — —dt
na/l 1+t+/1 1+¢
¢ Int
= 1naln(1—|—c)—lnaln2—|—/1 IL—i—tdt'
Similarly,
I Inbln2 — Inbl (1+1/)+/1/C It
= Inbln2—Inbln —— dt.
2 I 11
Therefore
L—I, = lnaln(l1+c¢)+Inbln(l+1/c)—In2lna—1In2lnb+

c 1
T / g
LT+t e lti

Let s = 1/t in the second integral to get

| LS|
/ Int . _ /Lds
1e 1+t . s(1+s)

Replacing in the expression for I; — I3 yields
IL—I, = Ina(ln(a+d)—Ina—In2)—Inb(In2—1In(a+b) +1nd) +

c
T / g
1 t

The last integral can now be evaluated by elementary means to produced the result.
O

Now comparing the two evaluation of the integral in Corollary 3.5 produces an
identity for the dilogarithm function.

Corollary 3.6. The dilogarithm function satisfies

. . 1 72 1
(320) LlQ(—Z) + L12 <—;) = —F — 5 11’12(21).
This is the first of many interesting functional equations satisfied by the polylog-
arithm functions. It was established by L. Euler in 1768. The reader will find in [4] a

nice description of them.
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4. A single multiple pole

In this section we consider the evaluation of

b
Inxdx
4.1 n(b,7) == —.
(1) fulhr) = | o
This corresponds to the elementary rational integrals with a single pole (at x = —r).

The change of variables x = rt yields

B Inr (b+r)rt —pn—l 1
fn(b,r) = (n— 1)rn—1 { b+ 7)1 ] -1 hn(b/7),
where
® Intdt

We first establish a recurrence for h,,.

Theorem 4.1. Let n > 2 and b > 0. Then h,, satisfies the recurrence
n—2 blnbd 1—(1+b)"2
4. n(b) = — .
(4.3) fin (0) fin-1(b) + mn=1)14+b"1 (n—1)(n—2)(1+0b)2

n—1
ProOF. Start with
b b

1+1t)—t] Intdt tintdt

hy (b) :/ I ) ]n = hp_1(b) —/ —

0 (T4 o (L+0)»
Integrate by parts in the last integral, with u = ¢ Int and dv = dt/(1 4 t)™ to produce
the result. O

The initial condition for this recurrence is obtained from the value

(4.4) ha(b) = Inb—In(1+b).

146
This expression follows by a direct integration by parts in

b
(4.5) ha(b) = — lim 1nt%(1 +1)~Ldt.

e—0

The first few values of h,(b) suggest the introduction of the function
(4.6) Gn(b) = (14 )" ha (D),
for n > 2. For example,
(4.7) g2(b) =blnb— (1+b) In(1 +b).

The recurrence for h,, yields one for g,.

Corollary 4.2. The recurrence

(n —2) blnb (L+b)[(1+0)" > 1]
(n_l)(l—’—b)anl(b)—’_n_l (n—l)(n—Z) ’

(4.8)  qn(b) =

holds for n > 3.
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Corollary 4.2 establishes the existence of functions X, (b), Y, (b) and Z,(b), such
that
(4.9) qn(b) = Xpn(b) Inb+ Y, (b) In(1+0) + Z,(b).
The recurrence (4.8) produces explicit expression for each of these parts.
Proposition 4.3. Let n > 2 and b > 0. Then

(1+b)n"t -1

(4.10) Xn(b) = —"—

Proor. The function X,, satisfies the recurrence

n—2 b
4.11 Xn(b) = 1+0)X,-1(b) + ——.
(111) (6) = = (14 D) X1 (6) + ——
The initial condition is X2(b) = b. The result is now easily established by induction.
O
Proposition 4.4. Let n > 2 and b > 0. Then
(1 + b)nfl

4.12 Y,(b) = ———.
(112) )=

Proor. The function Y;, satisfies the recurrence

n—2

(4.13) Yo (b) = — 1(1 +b)Y,_1(b).
This recurrence and the initial condition Y2(b) = —(1 4 b), yield the result. O

It remains to identify the function Z, (). It satisfies the recurrence

n—2 (14+b) [Q+b)""2—1]
4.14 Zn(b) = 1+0)Z,-1(b) — .
(4.14) ) = TR0+ Za () = S
This recurrence and the initial condition Zs(b) = 0 suggest the definition
4.1 T,00) = ——F——-—-.
(4.13) ®) b1 +0)

Lemma 4.5. The function T}, (b) is a polynomial of degree n — 3 with positive
integer coefficients.

ProoF. The function T,,(b) satisfies the recurrence

(1+b)"2 — 1} .

(4.16) To(b) = (n— 2)(1 + b)Tp_1(b) + (n — 3)! { ;

Now simply observe that the right hand side is a polynomial in b. O
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Properties of the polynomial T, (b) will be described in future publications. We
now simply observe that its coefficients are unimodal. Recall that a polynomial

(4.17) P (b) = zn:ckbk
k=0

is called wunimodal if there is an index n*, such that ¢, < cxq1 for 0 < k£ < n* and
¢k = ck41 for n* < k < n. That is, the sequence of coefficients of P, has a single
peak. Unimodal polynomials appear in many different branches of Mathematics. The
reader will find in [2] and [6] information about this property. We now use the result
of [1] to establish the unimodality of T,.

Theorem 4.6. Suppose ¢, > 0 is a nondecreasing sequence. Then P(z + 1) is
unimodal.

Therefore we consider the polynomial S,,(b) := T,,(b—1). It satisfies the recurrence

n—3
(4.18) Sn(b) =b(n —2)S,_1(b) + (n —3)! Y _b".
r=0
Now write
n—3
(4.19) Sn(b) = crnb",
k=0

and conclude that ¢g , = (n — 3)! and

(4.20) Chon = (M —2)ck—1,n—1 + (n —3)!,
from which it follows that

(4.21) Chtin — Chn = (M — 2) [Chn—1 — Ch—1,n—1] -
We conclude that ¢, is a nondecreasing sequence.

Theorem 4.7. The polynomial T}, (b) is unimodal.

Conclusions. We have given explicit formulas for integrals of the form

(4.22) /b R(z) Inzdx,

where R is a rational function with real poles. Future reports will describe the case of
higher powers

b
(4.23) / R(z) In™ x dx,
as well as the case of complex poles, based on integrals of the form
b
Inzdz
4.24 Cnla,r) = —_—.
(4.24) (a,7) /0 (22 + r2)n
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