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Abstract. Classical binomial identities are established by giving probabilistic

interpretations to the summands. The examples include Vandermonde identity
and some generalizations.

1. Introduction

The evaluation of finite sums involving binomial coefficients such as

(1.1)

n
∑

k=0

(

n

k

)

= 2n

appears throughout the undergraduate curriculum. At the end of the previous
century, the evaluation of these sums was trivialized by the work of H. Wilf, D.
Zeilberger and M. Petkovs̆ek [9]. The method of creative telescoping, described in
the charming book [9], provides an automatic tool for the verification of this type
of identities.

On the other hand, it is often a good pedagogical idea to present a simple identity
from many different points of view. The reader will find in [1] this approach with
the example

(1.2)

m
∑

k=0

2−2k

(

2k

k

)(

2m− k

m

)

=

m
∑

k=0

2−2k

(

2k

k

)(

2m+ 1

2k

)

.

The current paper presents probabilistic arguments for the evaluation of certain
binomial sums. The background required is minimal. The continuous random vari-
ables X considered here have a probability density function: this is a nonnegative
function fX(x), such that

(1.3) Pr(X ≤ x) =

∫ x

−∞
fX(y) dy.

In particular, fX must have total mass 1. Thus, all computations are reduced to
the evaluation of integrals. For instance, the expectation of a measurable function
g of the random variable X is computed as

(1.4) Eg(X) =

∫ ∞

−∞
g(y)fX(y) dy.
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2 A PROBABILISTIC APPROACH TO SOME BINOMIAL IDENTITIES

In elementary courses, the reader has been exposed to normal random variables,
written as X ∼ N(0, 1), with density

(1.5) fX(x) =
1√
2π

e−x2/2, for x ∈ R,

and to exponential random variables, with probability density function

(1.6) fX(x;λ) =

{

λe−λx for x ≥ 0;

0 otherwise,

with λ > 0.
The examples employed in the arguments presented here include random vari-

ables with a gamma distribution of shape parameter a > 0 and scale parameter
θ > 0, written as X ∼ Γ(a, θ). These are defined by the density function

(1.7) fX(x; a, θ) =

{

1
θaΓ(a)x

a−1e−x/θ, for x ≥ 0;

0 otherwise.

Here Γ(s) is the classical gamma function, defined by

(1.8) Γ(s) =

∫ ∞

0

xs−1e−x dx

for Re s > 0. The reader will find in [2] extensive information about this special
function. The exponential distribution is the special case of the gamma distribution
with shape parameter a = 1. Recall that for a random variable X, the n-th moment
is defined by E(Xn). Observe that if X ∼ Γ(a, θ), then X = θY where Y ∼ Γ(a, 1).
Moreover

(1.9) EXn = θn(a)n,

where

(1.10) (a)n =
Γ(a+ n)

Γ(a)
= a(a+ 1) · · · (a+ n− 1)

is the Pochhammer symbol. The main property of this family of Gamma random
variables is that it is closed under addition: assume Xi ∼ Γ(ai, θ) are independent,
then

(1.11) X1 + · · ·+Xm ∼ Γ(a1 + · · ·+ am, θ).

This follows from the fact that the density probability function for the sum of two
independent random variables is the convolution of the individual ones.

Another distribution will be useful in the following, namely the beta distribution
denoted as Be(a, b) with density

(1.12) fX(x; a, b) =

{

xa−1(1− x)b−1/B(a, b) for 0 ≤ x ≤ 1;

0 otherwise.

Here B(a, b) is the beta function defined by

(1.13) B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx
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and also the Pearson type II distribution [16] denoted as Pe(c) with density

(1.14)

{

1
B(1/2,c) (1− x2)c−1 for − 1 ≤ x ≤ 1;

0 otherwise.

The uniform distribution on [0, 1] appears as the special case a = b = 1 of the beta
distribution. A random variable Za,b with distribution Be(a, b) can be generated
as

(1.15) Za,b :=
Xa

Xa +Xb
,

where Xa and Xb are independent gamma distributed with shape parameters a and
b, respectively; and a random variable Zc with Pe(c) distribution can be generated
as 1− 2Zc,c, that is,

(1.16) Zc := 1− 2Xc

Xc +X ′
c

=
Xc −X ′

c

Xc +X ′
c

,

where Xc and X ′
c are independent gamma distributed with shape parameter c. A

well-known result is that Za,b and Xa + Xb are independent in (1.15); similarly,
Xc +X ′

c and Zc are independent in (1.16). The reader will find information about
these random variables and detailed proofs of the statements employed here in
Chapter 2 of [7].

The central idea of the paper is simple. Suppose a sequence of interest {ak}
is identified as the moments of a random variable X, so that E(Xk) = ak. Sup-
pose also that if X1, X2, · · · , Xm are independent random variables, identically
distributed like X, then the moments of the sum Y = X1 +X2 + · · ·+Xm can also
be computed, say E(Y k) = bk. Then the multinomial theorem and the linearity of
the expected value operator give

bn = E(X1 + · · ·+Xm)n

=
∑

k1+···km=n

(

n

k1, k2, · · · , km

)

E(Xk1

1 )E(Xk2

2 ) · · ·E(Xkm
m )

=
∑

k1+···km=n

(

n

k1, k2, · · · , km

)

ak1
ak2

· · · akm
.

In terms of probability density functions, this could be rephrased as saying that if

one can compute the integral

∫

R

xkf(x) dx as well as the integral

∫

R

xkf∗m(x) dx

of the m-th convolution f∗m of f with itself, then the multinomial theorem gives
interesting identities. This formulation hides the probability setting of the method.

2. A sum involving central binomial coefficients

Many finite sums may be evaluated via the generating function of terms appear-
ing in them. For instance, a sum of the form

(2.1) S2(n) =
∑

i+j=n

aiaj

is recognized as the coefficient of xn in the expansion of h(x)2, where

(2.2) h(x) =
∞
∑

j=0

ajx
j
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is the generating function of the sequence {ai}. Similarly,

(2.3) Sm(n) =
∑

k1+···+km=n

ak1
· · · akm

is given by the coefficient of xn in h(x)m. The classical example

(2.4)
1√

1− 4x
=

∞
∑

j=0

(

2j

j

)

xj

gives the sums

(2.5)

n
∑

i=0

(

2i

i

)(

2n− 2i

n− i

)

= 4n

and

(2.6)
∑

k1+···+km=n

(

2k1
k1

)

· · ·
(

2km
km

)

=
22n

n!

Γ(m2 + n)

Γ(m2 )
.

The powers of 1− 4x are obtained from the binomial expansion

(2.7) (1− 4x)−a =
∞
∑

j=0

(a)j
j!

(4x)j ,

where (a)j is the Pochhammer symbol.

The identity (2.5) is elementary and there are many proofs in the literature.
A nice combinatorial proof of (2.5) appeared in 2006 in [6]. In a more recent
contribution, G. Chang and C. Xu [5] present a probabilistic proof of these identi-
ties. Their approach is elementary: take m independent Gamma random variables
Xi ∼ Γ( 12 , 1) and write

(2.8) E

(

m
∑

i=1

Xi

)n

=
∑

k1+···+km=n

(

n

k1, · · · , km

)

EXk1

1 · · ·EXkm
m .

IfX ∼ Γ(a, θ), then the moments are given by (1.9). Thus, for each random variable
Xi, the moments are given by

(2.9) EXki
i =

Γ(ki +
1
2 )

Γ( 12 )
= 2−2ki

(2ki)!

ki!
=

ki!

22ki

(

2ki
ki

)

,

iterating the functional equation Γ(a+ 1) = aΓ(a) to obtain the second form. The
expression

(2.10)

(

n

k1, · · · , km

)

=
n!

k1! k2! · · · km!

for the multinomial coefficients shows that the right-hand side of (2.8) is

(2.11)
n!

22n

∑

k1+···+km=n

(

2k1
k1

)

· · ·
(

2km
km

)

.

The evaluation of the left-hand side of (2.8) employs basic probabilistic results
about the pdf of the sum of independent, gamma distributed random variables.
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From (1.11), the sum of m independent random variables Γ
(

1
2 , 1
)

has a distribution
Γ(m2 , 1). Therefore, the left-hand side of (2.8) is

(2.12)
Γ(m2 + n)

Γ(m2 )
.

This gives (2.6). The special case m = 2 produces (2.5).

3. More sums involving central binomial coefficients

The next example deals with the identity

(3.1)

n
∑

k=0

(

4k

2k

)(

4n− 4k

2n− 2k

)

= 24n−1 + 22n−1

(

2n

n

)

,

that appears as entry 4.2.5.74 in volume 1 of [10]. The proof presented here em-
ploys the famous multisection technique, first introduced by Simpson [11] in the
simplification of

(3.2)
1

2

(

E(X1 +X2)
2n + E(X1 −X2)

2n
)

,

where X1, X2 are independent random variables distributed as Γ
(

1
2 , 1
)

.
The left-hand side is evaluated by expanding the binomials to obtain

1

2
(E(X1 +X2)

2n + E(X1 −X2)
2n) =

1

2

2n
∑

k=0

(

2n

k

)

EXk
1 EX2n−k

2 +
1

2

2n
∑

k=0

(−1)k
(

2n

k

)

EXk
1 EX2n−k

2

This gives

1

2
(E(X1 +X2)

2n + E(X1 −X2)
2n) =

n
∑

k=0

(

2n

2k

)

EX2k
1 EX2n−2k

2 .

Using (2.9), this reduces to

(3.3)
1

2

(

E(X1 +X2)
2n + E(X1 −X2)

2n
)

=
(2n)!

24n

n
∑

k=0

(

4k

2k

)(

4n− 4k

2n− 2k

)

.

The random variable X1 +X2 is Γ(1, 1) distributed, so

(3.4) E(X1 +X2)
2n = (2n)!,

and the random variable X1 −X2 is distributed as (X1 +X2)Z1/2, where Z1/2 is

independent of X1+X2 and has a Pearson type II distribution Pe( 12 )
1 with density

fZ1/2
(z) = 1/(π

√
1− z2). In particular, the even moments of Z1/2 are proportional

to the central binomial coefficients:

(3.5)
1

π

∫ 1

−1

z2n dz√
1− z2

=
1

22n

(

2n

n

)

.

Therefore,

(3.6) E(X1 −X2)
2n = E(X1 +X2)

2n
EZ2n

1/2 =
(2n)!

22n

(

2n

n

)

.

1the Pearson type II distribution with parameter c = 1

2
is also called the arcsine distribution
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It follows that 2

(3.7) E(X1 +X2)
2n + E(X1 −X2)

2n = (2n)! +
(2n)!

22n

(

2n

n

)

.

The evaluations (3.3) and (3.7) imply (3.1).

4. An extension related to Legendre polynomials

A key point in the evaluation given in the previous section is the elementary
identity

(4.1) 1 + (−1)k =

{

2 if k is even;

0 otherwise.

This reduces the number of terms in the sum (3.3) from 2n to n. A similar cancel-
lation occurs for any p ∈ N. Indeed, let ω = e2πi/p be a complex p-th root of unity.
Then a natural extension of (4.1) is given by

(4.2)

p−1
∑

j=0

ωjr =

{

p if r ≡ 0 (mod p);

0 otherwise.

Observe that (4.2) reduces to (4.1) when p = 2.
The goal of this section is to discuss the extension of (3.1). The main result

is given in the next theorem. The Legendre polynomials appearing in the next
theorem are defined by the Rodrigues formula

(4.3) Pn(x) =
1

2n n!

dn

dxn
(x2 − 1)n.

The Legendre polynomials are examples of orthogonal polynomials and their prop-
erties may be found in a variety of texts. The authors’s favorite ones include [2],
[8], [13] and [14] as well as Chapter 4 in the recent book [3].

In a classical subject, like the one treated in this paper, it is hard to state that
a result is new. The authors have not been able to find the next theorem in the
literature.

Theorem 4.1. Let n, p be positive integers. Then

(4.4)

n
∑

k=0

(

2kp

kp

)(

2(n− k)p

(n− k)p

)

=
22np

p

p−1
∑

ℓ=0

(−1)ℓnPnp

(

cos

(

πℓ

p

))

.

Proof. Replace the random variable X1 − X2 considered in the previous section,
by X1 +WX2, where W is a complex random variable with uniform distribution
among the p-th roots of unity. That is,

(4.5) Pr
{

W = ωℓ
}

=
1

p
, for 0 ≤ ℓ ≤ p− 1.

The identity (4.2) gives

(4.6) EW r =

{

1 if r ≡ 0 (mod p);

0 otherwise.

This is the cancellation alluded to above.

2we note that this moment could be equally easily computed using the generating function

(2.7)
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Now proceed as in the previous section to obtain the moments

E(X1 +WX2)
np =

n
∑

k=0

(

np

kp

)

EX
(n−k)p
1 EXkp

2(4.7)

=
(np)!

22np

n
∑

k=0

(

2kp

kp

)(

2(n− k)p

(n− k)p

)

.

A second expression for E(X1 + WX2)
np employs an alternative form of the

Legendre polynomial Pn(x) defined in (4.3). The next result appears in [12].

Proposition 4.2. The Legendre polynomial is given by

(4.8) Pn(x) =
1

n!
E

[

(x+
√

x2 − 1)X1 + (x−
√

x2 − 1)X2

]n

,

where X1 and X2 are independent Γ
(

1
2 , 1
)

random variables.

Proof. The proof is based on moment generating functions. Compute the sum

(4.9) Eet(x+
√
x2−1)X1 Eet(x−

√
x2−1)X2 =

∞
∑

n=0

tn

n!
E

[

(x+
√

x2 − 1)X1 + (x−
√

x2 − 1)X2

]n

.

The moment generating function for a Γ
(

1
2 , 1
)

random variable is

(4.10) EetX = (1− t)−1/2.

This reduces (4.9) to

(

1− t(x+
√

x2 − 1)
)−1/2 (

1− t(x−
√

x2 − 1)
)−1/2

= (1− 2tx+ t2)−1/2

which is the generating function of the Legendre polynomials. See page 146 of
[3]. �

Corollary 4.3. Let x be a variable and X1, X2 as before. Then

(4.11) E(X1 + x2X2)
n = n!xnPn

(

1
2 (x+ x−1)

)

.

Proof. This result follows from Proposition 4.2 by the change of variables u =
1
2 (x+ x−1) and the identity u2 − 1 = ( 12 (x− x−1))2. �

Equation (4.11) is a polynomial identity in the variable x. Hence we can replace
x by the random variable W 1/2 and average over the values of W . This yields

E(X1 + x2X2)
np = (np)!

1

p

p−1
∑

l=0

eı
2π
p

npl
2 Pnp

(

1

2

(

eı
π
p + e−ıπp

)

)

(4.12)

=
(np)!

p

p−1
∑

l=0

(−1)nlPnp

(

cos(
πl

p
)

)

.

The proof of Theorem 4.1 is complete. �
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5. Chu-vandermonde and other classical identities

This section contains a selection of identities from the area of Special Functions
that can be derived by the method described in this paper. For example, the
arguments presented here to prove (2.5) can be generalized by replacing the random
variables Γ

(

1
2 , 1
)

by two random variables Γ(ai, 1) with shape parameters a1 and
a2, respectively. The resulting identity is the Chu-Vandermonde theorem.

Theorem 5.1. Let a1 and a2 be positive real numbers. Then

(5.1)

n
∑

k=0

(a1)k
k!

(a2)n−k

(n− k)!
=

(a1 + a2)n
n!

.

This is a well-known result and the reader will find in [2] a more traditional
proof. The paper [15] describes how to find and prove this identity in automatic
form.

Exactly the same argument as for (2.6) provides a multivariable generalization
of the Chu-Vandermonde identity.

Theorem 5.2. Let {ai}1≤i≤m be a collection of m positive real numbers. Then

(5.2)
∑

k1+···+km=n

(a1)k1

k1!
· · · (am)km

km!
=

1

n!
(a1 + · · ·+ am)n.

Proof. Consider m independent Gamma random variables Xi ∼ Γ (ai, 1) . Then
(1.9) gives

(5.3) EXk
i =

Γ (ai + ki)

Γ (ai)
= (ai)ki

,

and with X = X1 + · · ·+Xn,

(5.4) E [Xn] =
∑

k1+···+km=n

n!

k1! . . . km!
(a1)k1

. . . (am)km
.

To obtain the result recall (1.11): the sum X = X1+ · · ·+Xn is a Gamma random
variable with X ∼ Γ (a1 + · · ·+ an, 1). Therefore

(5.5) E [Xn] = (a1 + · · ·+ am)n .

�

The final stated result presents a generalization of Theorem 4.1. This statement

involves the Gegenbauer polynomial C
(a)
n (x) of degree n and parameter a > 0,

defined by the Rodrigues’ formula [2, 6.4.14]

(5.6) C(a)
n (x) =

(2a)n

2nn!
(

a+ 1
2

)

n

(−1)n(1− x2)
1
2−a dn

dxn
(1− x2)n+a− 1

2 .

The reader will find in [2] and [3] information about these polynomials and in
Section 18.3 of [8] a collection of formulas for them.

The authors have been unable to find the next result and the note following it
in the literature.
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Theorem 5.3. Let n, p ∈ N, a ∈ R
+ and ω = eiπ/p. Then

(5.7)

n
∑

k=0

(a)kp
(kp)!

(a)(n−k)p

((n− k)p)!
z2kp =

1

p

p−1
∑

ℓ=0

(−1)ℓnznpC(a)
np

(

1
2 (zω

ℓ + z−1ω−ℓ)
)

.

Proof. Start with the moment representation for the Gegenbauer polynomials

(5.8) C(a)
n (x) =

1

n!
E

(

U(x+
√

x2 − 1) + V (x−
√

x2 − 1)
)n

with U and V independent Γ(a, 1) random variables. This representation is proved
in the same way as the proof for the Legendre polynomial, replacing the exponent
− 1

2 by the exponent −a. Note that the Legendre polynomials are Gegenbauer

polynomials with parameter a = 1
2 . This result can also be found in Theorem 3 of

[12]. �

Note 5.4. The value z = 1 in (5.7) gives

(5.9)
n
∑

k=0

(a)kp
(kp)!

(a)(n−k)p

((n− k)p)!
=

1

p

p−1
∑

ℓ=0

(−1)ℓnC(a)
np

(

cos

(

πℓ

p

))

.

This is a generalization of Chu-Vandermonde.

The techniques presented here may be extended to a variety of situations. Two
examples illustrate the type of identities that may be proven. They involve the
Hermite polynomials defined by

(5.10) Hn(x) = (−1)nex
2

(

d

dx

)n

e−x2

.

The textbook [3] provides extensive information about this classical family of or-
thogonal polynomials.

The next theorem appears as entry 4.5.2.9 in volume 2 of [10].

Theorem 5.5. Let m ∈ N. The Hermite polynomials satisfy

(5.11)
1

n!
Hn

(

x1 + · · ·+ xm√
m

)

= m−n/2
∑

k1+···+km=n

Hk1
(x1)

k1!
· · · Hkm

(xm)

km!
.

Proof. Let N be a normal random variable with mean 0 and variance 1
2 . The proof

starts with the moment representation for the Hermite polynomials

(5.12) Hn(x) = 2nE(x+ iN)n,

that appears as Exercise 6.8 on page 167 of [13]. The details are left to the reader.
�

The moment representation for the Gegenbauer polynomials (5.8) and the same
probabilistic technique as before yield the final result presented here. The reader
will find the following statement as entry 5.18.2.7 in [4].

Theorem 5.6. Let m ∈ N. The Gegenbauer polynomials C
(a)
n (x) satisfy

(5.13) C(a1+···+am)
n (x) =

∑

k1+···+km=n

C
(a1)
k1

(x) · · ·C(am)
km

(x).
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Remark 5.7. A relation between Gegenbauer and Hermite polynomials is given by

(5.14) lim
a→∞

1

an/2
C(a)

n

(

x√
a

)

=
1

n!
Hn(x).

This relation allows us to recover easily identity (5.11) from identity (5.13).

The examples presented here show that many of the classical identities for special
functions may be established by probabilistic methods. The reader is encouraged
to try these methods in his/her favorite identity. For example, he/she may want to
prove the Pfaff-Kummer transformation formula

(5.15) 2F1 (a, b; c; z) = (1− z)
−a

2F1

(

a, c− b; c;
z

z − 1

)

where

(5.16) 2F1 (a, b; c; z) =

+∞
∑

k=0

(a)k (b)k
(c)k

zk

is the hypergeometric function, by remarking that

(5.17) 2F1 (a, b; c; z) := E (exp (zXaZb,c−b)) = E (1− zZb,c−b)
−a

where Xa ∼ Γ (a, 1) and Zb,c−b ∼ B (b, c− b) and by using the symmetry
1− Zb,c−b ∼ Zc−b,b. The reader will find in [2] a proof of (5.15).

Acknowledgements. The work of the second author was partially supported by
NSF-DMS 0070567. The authors wish to thank the referee for his detailed review
of the manuscript.
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