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A GENERALIZED POLYGAMMA FUNCTION
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We study the properties of a function ¥/(z, q) (the generalized polygamma function), intimately connected with the
Hurwitz zeta function and defined for complex values of the variables z and ¢, which is entire in the variable z
and reduces to the usual polygamma function ¥™(q) for z a non-negative integer m, and to the balanced
negapolygamma function ™ (¢) introduced in Ref. [5] for z a negative integer —m.
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1 INTRODUCTION

The Hurwitz zeta function defined by

oo
1
eg=) —= (1.1)
; (n+4q)
forze C,Rez> landg #0, —1, —2,... is a generalization of the Riemann zeta function

{(z) = {(z, 1). This function admits a meromorphic continuation into the whole complex
plane. The only singularity is a simple pole at z = 1 with unit residue. The recent paper [9]
presents a motivated discussion of this extension.

The Hurwitz zeta function turns out to be related to the classical gamma function, defined
for Reg > 0 by

[o.¢]

I'(qg) = JO t e dt, (1.2)

in several different ways. For example, the digamma function

d
Y(q) =4 logI(g) (1.3)
q
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appears in the Laurent expansion of {(z, ¢) at the pole z = 1:

1
()=~ — V(@) +0G — 1. (1.4)

A second connection among these functions is given by Lerch’s identity

T
C&mzmﬂMHf®=m4£9 (15)

where we have used the classical value {'(0) = — log +/2x in the last step.
A third example is the relation between the Hurwitz zeta function and the polygamma
function defined by

dm
Vg = W), meN, (1.6)
q
namely

Y"(g) = (=)™ mll(m + 1, g). (1.7)

These relations are not independent. Both (1.5) and (1.7) can be derived from (1.4), in the
limiting case z — 1, with the aid of the formula

a m
(@) (@ @) = (=1)"@,le+m, q). (1.8)

The digamma ((q) = ¥©(¢)) and polygamma functions are analytic everywhere in the
complex g-plane, except for poles (of order m + 1) at all non-positive integers. The residues
at these poles are all given by (—1)"*!m!.

Extensions of the polygamma function 1" (g) for m a negative integer have been defined
by several authors [1, 6, 5]. These functions have been called negapolygamma functions. For
example, Gosper [6] defined the family of functions

V_i(q) :=log I'(g),

! (1.9)
i) i= [ W k=2
which were later reconsidered by Adamchik [1] in the form
V@)= g [ €= 0t g T k22 010)
_kq_(k—2)!0q g . > 2. )

These negapolygamma functions can be expressed in terms of the derivative (with respect to
its first argument) of the Hurwitz zeta function at the negative integers [1, 6]. The definition
of the negapolygamma functions in (1.9) can be modified by introducing arbitrary constants
of integration at every step. This yields infinitely many different families of negapolygamma
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functions, with the property that the corresponding members of any two families differ by a
polynomial,

W) — W(G) = P (@),

where the functions p,(g) are polynomials in ¢ of degree n, satisfying the property

D) = - pusi(@)
q

An example of such modified negapolygamma functions has been introduced in Ref. [5],
in connection with integrals involving the polygamma and the loggamma functions. These
are the balanced negapolygamma functions, defined for m € N by

1
V(g 1= —An(q) — Hy-1Bu(@)) (L11)

where H,:=141/24---+ 1/r is the harmonic number (Hp := 0), B,(gq) is the mth
Bernoulli polynomial, and the functions 4,,(q) are defined in terms of the Hurwitz zeta
function as

An(q) :=ml'(A —m, q). (1.12)

A function f(g) is defined to be balanced (on the unit interval) if it satisfies the two properties

1
J f@ydg=0 and £(0) =£(1).

0

Note that the Bernoulli polynomials, which are related to the Hurwitz zeta function in a way
similar to (1.12),

Bm(q) = _mz(l —m, q)a m e Na (113)

are themselves balanced functions. In Ref. [5] we have shown that the balanced negapoly-
gamma functions (1.11) satisfy

di‘qw“'")(q) — "), meN, (1.14)

This makes them a negapolygamma family, connecting " (¢) = log T'(¢) + {'(0) to the
digamma function ¥ (¢) = dlog I'(¢)/dg.

The goal of this work is to introduce and study a meromorphic function of two complex
variables, ¥/(z, q), the generalized polygamma function, that reduces to the polygamma func-
tion /™ (¢q) for z=m € Ny and to the balanced negapolygamma function y~(q) for
z=—m € —N. We describe some analytic properties of Y(z, ¢) and show they extend
those of polygamma and balanced negapolygamma functions. We also present some definite
integral formulas involving (z, ¢) in the integrand. Finally, we compare our generalized
polygamma function with a different generalization introduced by Grossman [8].
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2 THE GENERALIZED POLYGAMMA FUNCTION

The generalized polygamma function is defined by

0 [ yzC(ZJrl,q)} @

Ve q) = e o | TR S

where z€ C and ¢ € C, g ¢ —Ny. At z =m € N, where I'(—z) has a pole, and at z =0,
where both I'(—z) and {(z + 1, ¢) have poles, we define (2.1) by its corresponding limiting
values given in the proof of Theorem 2.4. We show below that, for fixed g, ¥/(z, q) is indeed
an entire function of z.

The alternative representation

vt = 5 ] 2)
follows directly from (1.8).
LEMMA 2.1 The function W(z, q) is given by
0G0 = 5 G+ L)+ [+ U2+ 1, ) 23)
and
U = 5 G+ L)+ H-2 = DG+ 1 o) 2.4)

where H is defined by

> 11
H(z) = ZG - +Z>. (2.5)

k=1

Proof Differentiation of (2.1) yields (2.3). The second representation follows from the
identity H(z) =7 + Y(z + 1); see Ref. [7], for instance. |

The function H can be termed the generalized harmonic number function. It has simple

poles with residue —1 at all negative integers, and reduces to the nth harmonic number
Hj, for z = k € N. It satisfies the following reflection formula:

H(—z)=H(z— 1)+ ncotnz. (2.6)

We show first that, for m € N, yy(—m, ¢q) reduces to the balanced negapolygamma function
¥ (q) defined in (1.11).

THEOREM 2.2 For m € N, y/(—m, q) = lp(_'”)(q),
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Proof Lemma 2.1 gives

1
W(—m, q) =%[C’(1 —m, q) + Hp—1{(1 —m, q)]. 2.7
The result now follows from (1.11)—(1.13). |

We show next that the generalized polygamma function has no singularities in the complex
z plane and that (0, g) is actually the digamma function y/(g).

THEOREM 2.3 For fixed q € C, the function Y(z, q) is an entire function of z. Moreover

(0, ¢) = Y(q).

Proof In the representation (2.4), the term 1/I'(z) is entire and {(z, ¢) has only a simple
pole at z = 1 and is analytic for z # 1. Thus z = 0 is the only possible singularity for y/(z, g).
This singularity is removable because for z near 0

Uetlg) _ <_12+ O(Z)) (~z 477+ 0C)
zZ

I'(—z2)
_1 7+ O0(2)
z
and
HEE LD Ly 00+ 00),
z) z
so that Y(z, ¢) = ¥(q) + O(z). |

We finally show that, for m € N, y(m, ¢) reduces to the polygamma function y™(g)
defined in (1.6).

THEOREM 2.4  The function Y(z, q) satisfies
0

and

Yim, q) =y (g), meN. 2.9
Proof Use (1.8) to produce

0 o[ aetDiEtg)
2V P="¢ GZ[e I(—2) ]

and then use I'(—z) = —(z+ 1)I'(—z — 1) to obtain (2.8).
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The identity (2.9) follows by induction from Theorem 2.3 and (2.8), but we provide an
alternative proof. Set z = m + ¢ and consider (2.4) as ¢ — 0. The expansions

; = (_1)m+1m!8 + 0(32) and H(—1—m—z¢) :1+Hm + O(e)
I'(—m—¢) e

are the only terms that produce a nonvanishing contribution in (2.4) as ¢ — 0. We conclude
that y(m, ¢) = (—1)"™'m! {(m + 1, ¢) and the result follows from (1.7). |

3 FUNCTIONAL RELATIONS

The generalized polygamma function (z, ¢), as a function of ¢, satisfies some simple
algebraic and analytic relations. These are derived from those of I'(z) and {(z, q).

THEOREM 3.1  The function Y(z, q) satisfies

1 —H(—z—-1
e g+ D) =i g+ M HCZ =D

.1
qz+lr‘(_z) (3 )
Proof The identity
1
g+ 1=, q)—}, (3.2)
produces
Ve g+ D =P g — e F o
& =¥iad 0z ¢HI(=z)|
The result now follows from y + y/(—z) = H(—z — 1). |

Relation (3.1) generalizes the well-known functional relations for the digamma and poly-
gamma functions,

1
Yg+1)= lﬁ(q)+5, (3.3)
m m (_ 1)mm!
Y+ 1) =y () + o (3.4)
and the corresponding relation

m—1

q
(m—1)!

Vg + 1) =y ) + [Ing —H,1] (3.5)
for the balanced negapolygamma function [5].

Note We have been unable to find a generalization of the other well-known functional
relation for the polygamma function,

(—1P(1 = q) = p(q) + %m ra. (3.6)
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The next result establishes a multiplication formula for y(z, g). It generalizes the analo-
gous result for the digamma function, [7, (8.365.6)].

THEOREM 3.2 Let k € N. Then,

! lz+1, kg)
1
(z ) ' In k—F(—z)

j Ink Jj
= [(Z"”k)_r(—zf(z“’q*k)} 7

Proof Use the multiplication rule

»

Wz, kq) =

_oM

k=1 .
Kl kg) = ) z(z, q +’;) (3.8)
=0
for the Hurwitz zeta function in the Definition (2.1) of ¥(z, g). |

The case k£ = 2 yields the duplication formula

{z+1,2¢9)

e 3.9)

¥z, 2q) = 22% [lﬂ(zy 9+ lﬁ(z, q +%)] —1In2

4 SERIES EXPANSIONS OF y(z, )

In this section, we present two different series expansions for the generalized polygamma
function. The first is a generalization of the well-known expansion of the digamma function,

Yg+1)=—y+ > (=D k+ D', gl < 1. (4.1)

k=1

THEOREM 4.1 Letz € C and |q| < 1. Then
=) qk
Yz g+ 1) = ;xp(ﬂ k, 1) e (4.2)

Proof The Taylor expansion of (z, ¢ + 1) around ¢ = 0 can be expressed in terms of
Y(z, q) using the iterated version of (2.8),

ak

evaluated at ¢ = 1. The radius of convergence is computed to be 1 by using the ratio test, the
identity

Yz, 1) = %[C +D+H(—z—-1D{=z+ D], (4.4)
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and the fact that {'(z+ 1) tends to zero faster than the term H(—z — 1){(z+ 1) as
zZ — 0. |

Note 4.2 The series expansion (4.1) for the digamma function is the special case z = 0 of
(4.2). This follows from the values

Y(0, 1) = y(1) = —y 4.5)
and
Yk, 1) = (1) = (= Rk + 1), (4.6)

for k € N. Similarly z = —1 and the value y(—1, 1) = {’(0) yield the well-known expansion
of the loggamma function,

= k
log (g + )= —g+ 3 (-1} g, g1 <1 @)
k=2

Note 4.3 Riemann’s functional equation,

e nz\ {(2)I'(2)
=2 = d = 2)sin(z/2) — 2005(?) Qny “-8)
yields the alternate representation
Ui, 1) = 2(2n)zcos(§) [(/ +In2n — gtan %Z>C(—z) - c’(—z)]. 4.9)

Note 4.4 Theorems 3.1 and 4.1 determine the behaviour of Y(z, ¢) for small g:

1 Ing H(-z-1)
[(—z)g'! [(—z) ¢!

Wiz, q) = +ye D+YE+1, Dg+0G?).  (4.10)

For z = m € Ny the coefficients of the first two terms are

1 H(=m—1)
e (el

— (_ 1)m+l m!’

so the logarithmic term drops out and we recover the known behaviour of the polygamma
function as ¢ — 0,

_1 m+1 '
00 = SO + ) @.11)

For z ¢ N with Rez > —1 the first term in (4.10) determines the leading behaviour, and if
Rez < —1 the first two terms in (4.10) vanish as ¢ — 0 and hence /(z, ¢) tends to the finite
value Y(z, 1) given by (4.4) or (4.9).

We now establish a Fourier series representation for the generalized polygamma function

W(z, ).
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THEOREM 4.5 For Rez < —land 0 <q < 1:

Yz, q) =2Q2ny |:,§1: 7“(y + In 27m)cos(27mq + %) - g,,i:: nzsin<27mq + 7;Z)j| . (4.12)

This result generalizes the Fourier expansion for the balanced negapolygamma function
given in Ref. [5]. It implies that Y/(z, ) is itself balanced for any z such that Rez < —1.

Proof Lets=z+ 1 in the Fourier representation of the Hurwitz zeta function,

2T(1 —5)| . /7;s\ = cos(2mgn) TS\ o Sin(27gn)
C(S, q) :W[Sln<2) ZT_'_COS(?) an—s]’ (413)

n=1 n=1

which is valid for Res < 0 and 0 < ¢ < 1, and substitute (4.13) into (2.1). |

5 INTEGRAL REPRESENTATIONS OF y(z, q)

This section contains integral representations for y/(z, g) that are derived directly from corres-
ponding integral representations of the Hurwitz zeta function. For instance,

__ L [P
c(z,q)_r(Z)L T (5.1)

valid for Rez > 1 and Reg > 0, implies the next result.

THEOREM 5.1 Let Rez > 0 and Req > 0. Then

00 o=l

vea)=-|

|:cos nz + ’ sin 7z + S t] dr. (5.2)
o 1 —e™! m m

Proof The identity

: 00 —qt
C(z—i—l,q)__smnzj e 2 dr (5.3)

-z T Jg l—e!
follows from the integral representation for {(z, ¢) in (5.1) and the reflection rule for the
gamma function. The result now follows from the definition of y(z, ¢). |

A Hankel-type contour is a curve that starts at 400 + i 0+, moves to the left on the upper
half-plane, encircles the origin once in the positive direction, and returns to +00 — i 04 on
the lower half-plane. The Hurwitz zeta function has the following integral representation
along a Hankel-type contour [12]:

» (0+) —qt
et+lg 1J+ v, 5.4)

[(—z) 27} l—e

valid for arbitrary complex z and Reg > 0.
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THEOREM 5.2 Let q,z € C with Req > 0. Then

(0+) _ —qt
! J Pl InCoe™ ey, (5.5)

VeD=Ton), T i—e

Proof The result follows directly from (5.4).

6 DEFINITE INTEGRALS INVOLVING y(z, q)

Definite integrals of Y/(z, a + bg) can be directly obtained from its primitive,
J(//(z,a—l—bq)dq:b_lt//(z— 1, a+ bq), (6.1)

according to (2.8). So, for example,

0, ifRez<O,

oo, if Rez>0, 6.2)

jl VG, g)dg = {

0

where we have used the result (4.10) to evaluate Y/(z, ¢) at the origin.
The integral formulas presented below are direct consequences of the corresponding inte-
gral formulas for the Hurwitz zeta function. Several of these were derived in Refs. [4, 5].

THEOREM 6.1 For Rez, Rez’ < 0 and Re(z+7') < —1,

1 _ 2
J Ve, U ) dg = 22m* cos "C ) { [Z LG+ 2n>2}a—z )
0
=200+ 2 (—z =2V +{"(—z — Z')}. (6.3)

Proof This is a direct consequence of the following result [4],

(s — ')
2 9

{s, )l q)dg = {2 —s—s")cos

Jl 2I'(1 — s)I'(1 —5')
0 (27_[)27375’
valid for Res < 1,Res’ < 1,Re(s+ ') < 1. Set s =z+ 1,5 =2 + 1, divide by I'(—z) x
I'(—Z'), and construct the functions Y(z, q), Y(z, q) in the integrand according to
definition (2.1). |
The evaluation (6.3) generalizes Example 5.6 in Ref. [5]: for &, & € N,

1 _
J Y P T g)dg = % [C”(k + k) =20y + In2m){'(k + K)
0

2
+{(~/ +In2n) +%}C(k + k’)]
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The special case k = k' = 1 reduces to

J(IHF(CI)) dq_ﬁ+48+ yln\/ﬂ—i— 1n2«/2——(y+21n\/_)C(2) 52222)’

given in Ref. [4].
COROLLARY 6.2 Let Rez < —1/2. Then
1 2
L Wiz, g dg = 2(271)22{ [4 +@+In 2n)2]§(—2z) —2(y 4+ In2n)'(—22) + 5”(—22)}.
(6.4)
For Rez < —1,
[ v we+ 1.rdg =0 (65)
The same type of argument gives the next evaluation.

THEOREM 6.3 For Rez,Rez < 0,and Re(z+2) < —1,

: / 747 T / . /
J (e+ 1, W @) dg = 2207 (=) T (=2 —2)sin 2~ 2)
0

FIO 4+ In2m) (=2 — 2) = {(—z — 2)] cosg(z - z)}. (6.6)

COROLLARY 6.4 For Rez < 0,

1
|, € awees dg =5 @nrTa - 201 22, (6.7)

Our final evaluation computes the Mellin transform of the generalized polygamma function.
THEOREM 6.5 Leta, b € R", o, z € C such that 0 < Reo < Rez. Then

b™T (o)
sinm(z — o)
I'c+1—-a)lz+1-—0,a) (6.8)

Joo ¢ Wz, a+ bg)dg = [(sinm2)(z — o, @) + (sin 7o)
0

Proof Start from formula (2.3.1.1) of Ref. [10],

J " Vs a+ ba)dg = b B, s — D — . a),
0

valid for a, b € R* and 0 < Re(x) < Re(s) — 1, set s = z + 1, and use the Definition (2.1) of
Y(z, q) to evaluate the integral as

‘“F(oc) _
7

6 [e*z(sm ) z+1—a)(z+1—a,a)].
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The desired evaluation now follows from the reflection formulas for the gamma and digamma
functions,

(1 — 0)[(x) = ﬁ and (1 — x) = Y(x) + mcot ax,

respectively. u

Note 6.6 The special case z = m € N in Theorem 6.5 yields an explicit form for the Mellin
transform of the polygamma function " (a + bq):

ro ¢ W (a + bg)dg = (= 1" T(@)T(1 +m — oa)l(1 +m — a, a), (6.9)
0

valid when 0 < Reax <m and a,b € RT. This formula generalizes formula (6.473) of
Ref. [7] to the case a, b # 1.

7 RELATION TO GROSSMAN’S GENERALIZATION OF
THE POLYGAMMA FUNCTION

In 1975, N. Grossman presented a generalization of polygamma functions to arbitrary com-
plex orders [8] which is different to ours. He was motivated by a problem proposed a year
earlier by B. Ross [11] concerning the convergence and evaluation of the integral

I= Jq (g — P Nog T'(r)dt. (7.1)
0

For p € N, this integral corresponds precisely (up to a normalization factor) to the Gosper-
Adamchik’s negapolygamma functions defined by (1.10). In Ref. [8] the author used the tech-
niques of Liouville’s fractional integration and differentiation to obtain a generalization
¥ ")(q) of the polygamma function, with v € C, in the form

w(v)(q) _ q—v—l { 1 r/(_v)} B ,yq—v q—v—l J~2+ioo . F(Z)C(Z) n &

In =+ _
I'(—v) nq+/+ I'(—v) ra—-v)y 2 ), ;s T'(z—v)sinnz
(7.2)

where the contour of integration is along a vertical line with 1 < /. < 2. The function /")(¢)
is an entire function in the v-plane, for each ¢ in the plane cut along the negative real axis [8].

For v = —m € —N, Grossman’s generalized polygamma Y"(g) reduces to the Gosper—
Adamchik negapolygamma functions ¥_, (¢). We showed in Ref. [5] that the latter are
related to the balanced negapolygammas ™ (q) by

m—r—1

m—1
V@D =@+ Y s ) ) (7.3)
r=0"" ’
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which, in light of (4.4), can be also expressed as

m—1 m—r—1
gy = q I
V@ =@+ Ly LD (74)

In the remainder of this section, we shall explore the relation between the functions (v, g)
and y")(¢) for arbitrary values of the complex variable v. Since both of these functions are
entire in v, their difference

PO, q) ==y, ) —¥"(q) (7.5)

must be an entire function itself. Furthermore, since both y(v, ¢) and ") (¢) reduce to the
standard polygamma function when v € Ny, W(v, ¢) vanishes identically at v € Ny. In
order to study further properties of the function W(v, ¢), we shall consider the asymptotic
and small-g series expansions of both (v, ¢) and ¥")(¢). First, we shall derive the correct
asymptotic expansion of Grossman’s polygamma for large ¢, since this was incorrectly
given in Ref. [8]. Let

1 J’~+"°° TE@e) n

v =74 i—ico . Tz —v)sinmnz (7.6)

2mi

As suggested in Ref. [8], for ¢ > 1 we can deform the contour so that it starts at —oo — i0+,
runs below the real axis, encircles the point z = 1 in the positive sense (crossing the real axis
to the left of z = 2), and then returns to —oo 4+ i0+ running over the real axis. /(v, g) can
then be evaluated along the deformed contour by a residue calculation. The only relevant
poles are z=1 and z=0,—1,-2, ..., coming from I'(z), {(z), and from the zeros of
sin(nz). The poles at z = —2k are simple since {(—2k) = 0. All the other poles are double.
Let R\(zo) be the residue at the pole z = zy. Then

—qlng +q(1 —v)

R(1) = =L
_H(-1-v)—In2n—Ing
R.(0) = o) ,
e 7 _ Bm+l _ o
Ri=m) = e [C( m) = {ing + Hyy — H(=m — v 1)}},

form =1, 2,3, .... Using the special values By = 1, B; = —1/2, {'(0) = —(1/2)In 27, and
Hy = 0, we obtain the asymptotic expansion

V(o o = By RS k{'(1 — k) — BxHi—
Vi@ ~a {lnq;k!r(l Vb ,; KT — v — k)gt
> BkH(—k - V)
- ;k!l“(l - k)qk}‘ .7)

We observe that Grossman [8] missed most of the logarithmic contribution.
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The asymptotic expansion of the generalized polygamma function (v, g) for large ¢ can
be obtained from (2.1) and the asymptotic expansion of {(z, q) itself. This yields

Y(v, q) ~ 1nqsm”VZ 1y B F(kq+ v)_cosmi (1B F(kq—i— v)

sinnvz( 1)kBkH(k+v - l)F(k+v)

n = k! qF

The reflection formula for I'(z) yields

sin 7ty k _ 1
DT+ = 5=

and the reflection formula (2.6) for the harmonic number function produces
H(k+v—1)=H(—k —v)— mcotnv.

Thus

2. BiH(—v—k)
Y@, q) ~Ing Z < KIT(1 — k)qk+» Z klr(kl kg (7.9)

We obtain therefore the following asymptotic expansion for the function W(v, g) defined
by (7.5):

& Wk

We note that for v = m € N the formal series on the right-hand side vanishes identically, as
it should. For v = —m € —N| the series above reduces to a polynomial in ¢, which coincides
with the one appearing in (7.4).

On the other hand, for |¢| < 1, Grossman has proven that his polygamma function has the
convergent expansion’

_‘;_1

)
V() = ( -

{—lnq +y+Y(—v)+ ? + ) (=D LRB(-, k)qk}, (7.11)
k=2

which, on account of the special values for Y/(z, 1) at the non-negative integers given in (4.5)
and (4.6), can be written as

—Ing+ H(—v— 1)+ i Yk, 1) k=v.

M7 —
Vi) = ¢ HT(—v) —v+k+1)

(7.12)

'There is actually an error in the expression given in Ref. [8].
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This is to be compared with the small-g expansion of the generalized polygamma function
Y(v, q) obtained in Theorems 3.1 and 4.1:

_ —Ing+H(—v—1) Zt//(k—i—v Do

VO 9 = Ry T+ 1) (7.13)

Again, both expansions coincide if v € Ny, since 1/I"(z) vanishes at the non-positive integers,
and differ by the polynomial in (7.4) if v=—m € —N.
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