SOLUTION TO PROBLEM #11519 PROPOSED BY OVIDIU
FURDUI

Problem: Find
S = n+m n+m
>
where H,, denotes the n-th harmonic number.
T. Amdeberhan and V. Moll, Tulane University, New Orleans, Louisiana.

Solution 1: The harmonic number H,, =1 + l + -4 % is given by
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Therefore the requested sum is
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To evaluate it in closed form, define
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and observe that § = S (1) Differentiating with respect to the parameter b gives
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The double series are easy to compute: they are simply squares of geometric series.
Thus,
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Evaluating the elementary integral yields
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Finally, integrating with respect to b (done by using Mathematica, but a computer-
free proof is also possible) yields
S(b) = 55 5 In“(1 + b) — Dilog(—b),
where
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is the dilogarithm function. The special case b = 1, using Dilog(—1) = —72/12
yields
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Solution 2: An alternative approach to this problem begins with the generalization
- S
n,m>1
A closed-form expression is now derived for T'.
Let kK = n + m to reduce T( ) to a single sum
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For |g| < 1, the uniformly convergent series
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by Cauchy’s product formula. Thus
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The limit ¢ — —17 implies the result:
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