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1. Introduction

The Hurwitz zeta function, defined by

o0
1
Z,q) = —_— 1.1
¢z 9) ;(HW (1.1)
forz € Cand g # 0, —1, —2, ..., is one of the fundamental transcendental functions.

The series converges for Re(z) > 1 so that £ (z, ¢) is an analytic function of z in this region.
The integral representation

g == f R (12)
DT )y T |

where I'(z) is Euler’s gamma function, is valid for Re(z) > 1 and Re(g) > 0, and can be
used to show that ¢(z, ¢g) admits an analytic extension to the whole complex plane except
for a simple pole at z=1. In most of the examples discussed here we consider only the
range 0 < g < 1. Special cases of ¢(z, g) include the Riemann zeta function

> 1
(@) =t@=) — (1.3)
n=1
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and
( ) 22;(2,1“)1: F- 2. (14)

The function ¢(z, ¢) admits several integral representations in addition to (1.2). For
example, Hermite proved

1 1 1-z 1—z
$(z,q) = —q +—q +2¢q (1.5)

/"o sin(z tan~' ¢) dt
1 0

(1 + t2)z/2(82mq _ 1) ’

which is valid for ¢ > 0 and z # 1. In fact, (1.5) is an explicit representation of the analytic
continuation of (1.1) to C — {1}.

Among the many places in which ¢(z, g) appears we mention the evaluation by Kolbig
[18] of integrals of the form

Ry (i, v) = foooe'”t“ In™ ¢ dt, (1.6)
an example of which is
Ry(u,v) = " TWIW () —Inp)* + (2, v)]. (1.7)
Here
Y(x) =T"(x)/T(x) (1.8)

is the logarithmic derivative of I"(x), also called the digamma function.
The Hurwitz zeta function also plays a role in Vardi’s evaluations [29] of

/2 ' (3/4)v/2
/ Inlntanx dx = ZIH<M> (1.9)
/4 2 I'(1/4)
and [28] of Kinkelin’s constant
k2
InA: 11m[1n(1 22 k5 — (k2+k+1)lnk+ 4} (1.10)
as
1
lnA_exp<——§ (— 1)) (1.11)
12
Yue and Williams [32, 33] established the integral representation
242 - 2
£z, q) = 227)""! / Sm(m/ +2rg) =S/ pe o (112)
0 —2e¥cos2mqg + 1
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and used it to evaluate definite integrals, (1.9) among them. For example, for 0 < a < 1,
they obtain

/"’o e *Inx dx T 1 ' —a)
= n .
o e —2e*cos2ma+1 2sin2ma 2m)2=1T(a)
Integrals involving the Hurwitz zeta function also appear in problems dealing with dis-

tributions of {nx} for x ¢ Q and n € N, where {x} denotes the fractional part of x. In this
context Mikolas [23] established the identity

1 2, 8(22) ((@b)Y’

/0 ¢ =z, {aq}) ¢(1 =z, {bg})dq = 2I'"(z) ) ( [a. ] ) (1.13)
fora, b € N. Here (a, b) is the greatest common divisor of @ and b and [a, b] is their least
common multiple.

The Hurwitz zeta function also plays a role in the evaluation of functional determinants
that appear in mathematical physics. See [14] for a miscellaneous list of physical examples.
The Hurwitz zeta function has also recently appeared in connection with the problem of a gas
of non-interacting electrons in the background of a uniform magnetic field [13]. For instance,
it is shown there that the density of states g(E), in terms of which all thermodynamic
functions are to be computed, can be written as

4 12 E? —m?
g(E):Vﬁ(ZehB) EHip B ) (1.14)

where V stands for volume, B for magnetic field, m is the electron mass, and

1,
Hi(q) =0 Aqh) = Cg+ D) = 5g 7 (1.15)
As before, {g} in (1.15) denotes the fractional part of gq.
General information about ¢ (z, ¢) appears in [7] and [30].
In this paper we derive a series of formulae for definite integrals containing ¢(z, ¢) in

the integrand. A search of the standard tables of integrals reveals very few examples in [25]
and none in [16]. For instance, in [25], Section 1.2.1 we find the indefinite integral

1
/C(Z,Cl)d61=:C(Z—1,Q), (1.16)

which is an elementary consequence of

a
3ot @—La)=(0-2¢@aq). (1.17)
q

Section 2.3.1 of [25] gives two definite integrals:

f ¢“ 't(z,a+bg)dg=b""B(a,z — )l (z — a, a)
0
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fora,b € R*, 0 < Re(a) < Re(z) — 1; and

/ q“ '[¢(z,q) —q*ldg = B(ot, z — )¢ (z — @)
0

for 0 < Re() < Re(z) — 1, where B(x, y) is the beta function. The second integral is
actually a special case of the first with a = b = 1. The only other example in [25] is the
evaluation of one of the Fourier coefficients of ¢ (z, ¢) in Section 2.3.1:

b _ Q@) 7
/o sin(2rq)¢(z,q)dqg = e, csc<7> (1.18)

for 1 < Re(z) < 2.
The tables [16, 25] do contain many examples involving the special case

1
¢l —m,q) = ——Bu(q) (1.19)
m

formeN, g € ]R(J{ , where B,,(g) are the Bernoulli polynomials defined by their generating
function

tm

ted! s
E By, (4)—m' (1.20)
m=0 :

e’—l:

for |t| < 2m. These polynomials can be expressed as

Bu(g) =) ('Z) Big" ™ (1.21)

k=0

in terms of the Bernoulli numbers B,, = B,,(0). The latter are rational numbers; for example,
By=1, By= —1/2,and, B, = 1/6. The Bernoulli numbers of odd index B,,,+; vanish for
m > 1, and those with even index satisfy (—D"™1 By, > 0.

The relation (1.21) can be inverted to produce

.1 " (n+1 '
q _n~|—lz< ; )3,(q), (122)

=0

and since B;(1 — g) = (—l)fBj(q), we also have
1 & (n+1
1—¢)' = —— —-1)/ B;(q). 1.23
(1-¢9) n+1;()(j)’(‘” (1.23)
For example,

1 1
Bo(g) =1, Bi(g)=q — 3 By(q)=q*—q+ 3
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yield

1 1
1=Bo@), q=Bi1@~+5B0@: ¢ =B:(q)+Bi(q)+3Bo(@).
The results presented here are consequences of the Fourier expansion of ¢(z, ¢):
2I'(1 — 2) (T2 X cos(2mgn) 77\ o= sin(2mwgn)
é‘(Z, CI)= W X <S1n<7);T+COS 7 ;T .

(1.24)

This expansion, valid for Re(z) <0 and 0 < g < 1, is due to Hurwitz and is derived in [31],
page 268. A proof of (1.24) based upon the representation’

x| —x+3
»q) = ———=d. 1.25
(o) =2 /q G+t & (1.25)
appears in [8]. The result
1
/ ¢(z,q) dg =0, (1.26)
0

valid for Re(z) <0, follows directly from the representation (1.24). Although the Fourier
expansion is derived strictly for Re(z) < 0, it also holds for the boundary value z = 0. We
shall thus simply take z € R := (—00, 0] in most of the formulae presented below.

Our goal is to employ the representation (1.24) to evaluate definite integrals containing
{(z, q) inthe integrand. These evaluations can be seen as examples of the Hurwitz transform
defined by

1
()= [ r@ecad (1.27)

0
Properties of $ and its uses will be discussed elsewhere. The relation (1.19) between

Bernoulli polynomials and the Hurwitz zeta function yields, for each evaluation of the
Hurwitz transform, an explicit formula for an integral of the type

1
B, (f) = /0 F(@)Bn(q) da, (128)

and by (1.22) the evaluation of the moments of the function f

1
M, (f) = /O 4" f(q) da. (129)

We have attempted to evaluate symbolically, using Mathematica 4.0 and/or Maple V,
each of the examples presented here. The few cases in which this attempt was successful
are so indicated.
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The relations

(=D"*"'27)*" By,

c@2n) = o, . neN, (1.30)
_1\yntl
ci-m="D0 ey, (131)
n

, o 2 Cm)2n+1)
¢(=2n) = (=1 B eN, (1.32)
¢'(0) = —Inv27, (1.33)

and Riemann’s functional equation

_ £()Qm)'

S = 3 — s sin(rs 2) (134)
_ s\ §()T(s)

= 2005(7) 7(27_[)& (1.35)

will be used to simplify the integrals discussed below. The form (1.35) follows from (1.34)
by use of the reflection formula

F)C(1—x) = — (1.36)
sinmx
for the gamma function. The basic relation between the beta and gamma functions,
rx)r
Blr,y) = =0T, (137)
I'(x+y)

will also be employed throughout.

2. The Fourier expansion of {(z, q)

In this section we employ the Fourier expansion (1.24) for ¢{(z, ¢) to evaluate definite
integrals of the form

1
) :=fo f @&z, q)dg. 2.1)

The expansion is valid for z < 0.
We first record the Fourier coefficients of ¢(z, ¢). These can be read directly from (1.24).

Proposition 2.1. The Fourier coefficients of {(z, q) are given by

L _ 2m)? k! w
/o sin(2kmq)¢(z, q) dg = T@cso(;) (2.2)
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and

! _ Q@n)* k! 7
/0 cos(2kmq)¢(z, q) dg = T(Z)sec<7>. (2.3)

Proof: The orthogonality of the trigonometric functions and (1.24) yield

! NG
/0 sin(2kq)¢(z, q) dg = # cos(%). 2.4)

Now use the reflection formula (1.36) to obtain (2.2). The calculation of (2.3) is similar.
O

The theorem below reduces the evaluation of an integral of the type considered here to
the evaluation of a Dirichlet series formed with the Fourier coefficients of the integrand.

The remainder of the paper are applications of this result.

Theorem 2.2. Let f(w, q) be defined for q € [0, 1] and a parameter w. Let

fw, q) = ap(w) + Z an(w) cos(2gn) + b, (w) sin(27 gn) (2.5)

n=1

be its Fourier expansion, so that
1
a,(w) = 2/ f(w, g)cosQmgn)dg, n=>0, (2.6)
0
1
b,(w) = 2/ f(w, q)sinQmrgn)dq, n > 1. 2.7
0

Then, for z € R,

1 _ T -2 [ (72> aw) 72\ 5 b (w)
/(; f(w,q)t(z,q) dg = W (sm(?)z e +cos<7>z e )

n=1 n=1

(2.8)
and
1 Fl—2) (. (72 & a,(w) 72\ o= by(w)
I e <<7>2 e en(5) 20 )
(2.9)

Proof: Multiply (2.5) by ¢(z, g), integrate over [0, 1], and apply (2.2) and (2.3) to give
(2.8). Observe that the integral of ¢(z, g) over [0, 1] vanishes, so there is no contribution
from ag(w). The second result follows from the fact that the Fourier expansion of ¢(z, 1 —¢q)
differs from that of ¢(z, ¢) given in (1.24) only in the sign of the last term. O
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3. Product of two zeta and related functions

In this section we evaluate integrals with integrands consisting of products of two Hurwitz
zeta functions. Classical relations for the Bernoulli polynomials are obtained as corollaries.

Theorem 3.1. Letz, 2’ € R;. Then

! Ml -1 =27 —7
f 2z, q)¢(z,q)dg = (1 = 2)T( Z)4(2—z—z’)008(¥> 3.1)
0

(27.[)27:71’
cos(m(z —7)/2)

= - "~ 1)B(l—z,1—7) ——— == 2
¢+ =DB( -z, Z)cos(n(z+z/)/2) (3.2)
Similarly,
: 2T (1 — (1 — 7' /
/ (@ @)ee - gydg = — 0 DOTE Z);<2—z—z/>cos(w) (33)
0 (2m)=2 2
=¢(z+7 - DBl -z, 1-2). (3.4)

Proof: The expansion (1.24) shows that the coefficients of £ (z’, ¢) are given by

21— Z)sin(rz/2) 1

n— (27'[)1’1’ nl=7"’
b 2T (1 — ) cos(mz'/2) 1
n— (zﬂ)lfz’ nl=2"

Theorem 2.2 then yields (3.1). Now use Riemann’s relation (1.34) for the ¢-function to
obtain (3.2). The proofs of (3.3) and (3.4) are similar. o

Note. An integral related to (3.1) appears in [4].

Example 3.2. Letz € R, . Then

/0 1 %z, q)dg = 2T (1 — 2)21)*?£ (2 — 22) (3.5)

and
/0 1 £z, )¢ (z. 1 — q)dg = —2T*(1 — 2)2m)* ¢ (2 — 22) cos(mz).  (3.6)
Proof: Letz =z in(3.1)and (3.3). O

Example 3.3. Letm € Ny. Then

1
Bl
| B =22, (67)
0

()
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Proof: Form >1letz=1— m in (3.5). The case m =0 is direct. O

Example 3.4. Letm € N. Then

! 1 Cm)!'\* ¢Qm + 1)
2( _ - _
/0 ¢ ( m+2’q> da= (22’”m!> Qm)>m 68

Proof: Letz=-m+ % in (3.5) and use

r (m + %) = 4ﬁ(2m)!.

22m |

In particular, for z = —% (m =1) we obtain

2 Z —

The next two examples present special cases of (3.2) that involve integrals of Bernoulli
polynomials.

Example 3.5. Letz € Ry and m € N. Then

! m!g(z—m)
f B(@)¢(z, q)dg = (— 1y EEEZ M, (3.10)
0 (1 - Z)m
where (2)r:=z(z 4+ 1)(z+2)...(z + k — 1) is the Pochhammer symbol.
Proof: Letz =1 — m in (3.2) to produce
1
/ Bu(9)¢(z, @) dg = (—1)""'m B(1 — z,m)¢ (z — m). (3.11)
0
The result then follows from B(1 — z,m) = (m — 1)!/(1 — 2),- O
The next formula appears as 2.4.2.2 in [25].
Example 3.6. Letn,m € N. Then
! m+1 Bern
B (q)Bu(q)dg = (—1) Gl (3.12)
0 m

The case m = n confirms (3.7).
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Proof: Letz =1—n € —Njin (3.10) to obtain

(=1D)"nm!¢(1 —n —m)

1
/0 Bon(q)Ba(q) dq =

(n)l‘ﬂ
(=D™m!n!l¢(n + m) (n(m—i—n))
= 2 cos
(27‘[)"+m 2

using (1.35). Both sides of (3.12) vanish for n +m odd, and for n +m even the result follows
from (1.30). O

We now establish a formula for the moments of ¢(z, q).

Theorem 3.7. The moments of the Hurwitz zeta function are given by

! N
" ) d = — ! . N
/o”(“”q ”;@—m(m—wl)!

- - ¢(z—J)
=n! —1)/t! ) 3.13
";( L T Y G.13)

Proof: We prove (3.13) by induction. The case n = 1 follows from (3.10) and the vanishing
of the integral of ¢(z, g). For n > 1, integration by parts yields

1 1
1 3
/ q"“é(z,q)dq=—/ ¢""'—t(z—1,9)dq
0 -z Jo dq

:c<z—1)+(n+1)!§ =k ’
11—z 11—z kzz(z_k)k—l(n_k+2)!

where we have used (3.13) for power n. The final form is obtained from the identity
(I -2 x @—=k-1=—(2— k. O

Note. Analytic continuation extends (3.13) ton — z + 1 > 0. See Section 12.

A direct proof of (3.13) can be given using the expansion of ¢" in terms of Bernoulli
polynomials given in (1.22) and the evaluation (3.10):

! 1 &Kn+ 1 [
" =—) B;
/0 q"¢(z,q)dq ”+1,»=0( i )/O i(@)¢(z,q)dg

1 &/n+1 i Jie@—
= ) LR A
n—i—le:l:( j >( ) (1-2);

Noting the similitude between (1.22) and (1.23), the proof above can be imitated to give
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Example 3.8. Forn € N,

: : {z—J)
—g)" = —n!
| a-orccad M e (3.14)

The special case z € —Nj in Theorem 3.7 yields the moments of the Bernoulli polynomials.

Example 3.9. Letn,m € N. Then

1 1 n - ("'H)
n — J
/0 q"Bu(@)dg = ———= 3 (=1)

m—+ m+j
j=1 (jJ)
n!'m! n+1+m
/! By, 3.15
(n+1+m),2( 1 <n+1 >+, (3.15)

Proof: Apply (1.19) to write
1 1
/ q"Bu(q) dg = —mf q"¢(1—m,q)dq
0 0

u LA =—m—G-D!( n
my (—1)/ = ( )

j=1 J=1
_ n+1 Jj+1 m+J n+1
= (-1 Z( Dt (m),< i)
m !

using (1.30) to go from the second to the third line. The final form follows from the identity

m+jX%:<m+j>.

q . O
m J: J

4. The exponential function

In this section we evaluate the Hurwitz transform of the exponential function. The result is
expressed in terms of the transcendental function

F(x.2) =) t(n+2—2x", forlx| <L (4.1)
n=0

Example 4.1. Letz € R, and |¢| < 1. Then

ra-z

Gope X RelePEGLL (4D

1
/ ¢ (2, ) dg = 2(1 = &)
0

where F(x, z) is given in (4.1).
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Proof: The generating function for the Bernoulli polynomials (1.20) yields

-1 "
eqt = Bn(CI)_"
t Zn:() n!

so that

1 el —1 . 1
qt j— J—
/Oe {(z,q)dg = ; E n!/o B,(9)¢(z, q) dq.

n=0

Since By(q) = 1 and ¢ (z, ¢) integrates to 0, the above sum effectively starts at n = 1. Thus
(3.11) gives

1 00 n
/'ﬂ%@qﬁw=GJ—DE:GJV%BU—Ln+1K&—n—1L
0 n=0 °
which can be written as
! 20" = DI'A —2) & t\" 7(z —n)
qt _ I\ — — -
/0 e’t(z,q)dg = = ;( 1) (271) t(n+2 z)cos( 5 >

using (1.35) and (1.37). Now replace ¢ by 2zt and use the evaluation cos(7(z — n)/2) =
Re(ei™="/2) = Re((—i)"e'™*/?) to yield the final result. ]

The next example results from z € —Nj in (4.2). It appears in [25]: 2.4.1.4.2

Example 4.2. Letm € Nand |¢| < 1. Then

(=)™ (2™ — 1) m!
(27Tl)m+1

1
/JM%@@=
0

L7]
x| 1=t coth(mr) =2 (=1)¢ @™ |. (4.3)

r=1

Proof: We discuss the case m = 2k + 1; the case of m even is similar. Letz =1 —m =
—2k in (4.2). Then

Re[e™ 2 F (it, 7)] = (=D Re [F (it, —2k)]

= (=D Y c@r+2+ 20 (=1t

r=0

= g [l I oth it — Xk:(—l)’ (2r)t2ri|
- 2 2 ¢ ’

1
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where we have employed the identity

1 2&
cothmmx = — — = Y (=1’ ¢(2r)x™ (4.4)
TX TX —1

that appears in [27], 3:14:5. O

5. The logsine function
This section contains examples involving the function In(sin 7 ¢). The standard tables [16]
and [25] contain very few examples of this type. See Sections 4.224 and 4.322 in [16].

Some of the evaluations presented here are computable by Mathematica 4.0.

Example 5.1. Letz € R;. Then

b _ =2z . (7z
/0 In(sinwq) ¢(z,q)dg = _W sm(7>§(2 —2) (5.1)
__t@ie-2 52)
2¢(1 —2)

where the second result follows from (5.1) when z # 0 by use of (1.34).

Proof: The Fourier coefficients of In(sin 7w g) are

1
/ In(sinq) sin(2nwrqg)dg = 0
0

and
] —In2 ifn=0,
/ In(sin 7w g) cos(2nm q) dg = 1
0 —— ifn>0.
2n
These appear in [16] 4.384. Thus (5.1) follows from Theorem 2.2. O
Example 5.2. Letm € N. Then
1 —1D)"2Qa) " mlc(m + 1) if m is even,
| ntsina) 501 dg = U n DA (53)
0 0 if m is odd.
Proof: Letz=1—m € —Njin (5.2) giving
! 1— 1
/ In(sinq) By, (q) dg = "2 —med+m). (5.4)
0 2¢(m)

Now use (1.35) to obtain the result. O



172 ESPINOSA AND MOLL

The next example evaluates the moments of In(sinwg).

Example 5.3. Letn € Ny. Then

¢"In(sinwg)dg = ——— o 'Z . (5.5)

/1 Sl (—DRk 4 1)
A 2m)* (n + 1 — 2k)!

Proof: Using (1.22) we have

! 1 1
/ q" In(sinmwq) dg = <n + ) f In(sinmq) B;(q) dq.
0 n+ 1 =0 ]

The result now follows by (5.3) and the classical value

1
/ In(sing) dg = —In 2. (5.6)
0

An elementary evaluation of (5.6) appears in [6].
The first few cases are

1
1
/ q In(sinwtg)dq = —=1n2,
0 2

! 1 ¢(3
/ g* In(sing)dg = —=1In2 — Q,
0 3 27'[2
. | 30(3) 5.7)
/0 q> In(sinq) dg = -7 In2 — iﬂ ,
1 ¢@3) | 3¢5
/0 g*In(sinq)dg = —gl n2— ?+ el
These evaluations can be confirmed by Mathematica 4.0. O

6. The loggamma function

This section contains evaluations involving the function InI"(g). None of the examples
presented here were computable by a symbolic language.

Example 6.1. Letz € R;;. Then

'l —z)
2 ZC( —2)

7 7z {'2-2)
X [n sm( > >+2 os( > ) {A 22 ”, (6.1)

1
/ InT"(q) ¢(z,q)dg =
0
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where

A:=2InN27 +y = —2% (€T = 2) (6.2)
z=0

and y is Euler’s constant.

Proof: The Fourier coefficients of In I'(¢) appear in [16] 6.443.1 and 6.443.3 as

! A+1
/ InT'(g) sin(2rng)dg = + nn7 neN, (6.3)
0 2nn
! 1
/ InT'(q) cos(2rng)dg = —, neN. (6.4)
0 4n
Thus
1 A—+1
a,=— and b, = —i—nn’
2n nn
where A is defined in (6.2). The evaluations
21 1 XA+ Inn
2igp =2F07Y 2 T =9 e
yield (6.1). O

Note. The integral

! 2 [y +2In/27 > Ink
InT 2 1 dog=—|+1—"""" 192 ,
/O nT'(g) cos((2n + ) q) dg 7'[2< + E TSR

(2n + 1)2 —~ (2n + 1)2
a companion to (6.4), was evaluated by Kolbig in [19]. This was recorded as 0 as late as in
the fourth edition of [16]. The fifth edition contains the correct value.

Example 6.2. Letm € N. Then

1
ma1 @M 2m + 1)

/ Bo(@)InT(q)dg = (1" 2220 D2 = f(=2m), (6.5)

0 2(2m)>m

1 ’
Bom [ £'(2m)

By InT'(g)dg = — — Al 6.6
| Bi@inr @ dg 2mx[§(2m) } (6.6)
Proof: Replace in (6.1) the variable z by 1 —2m and 2 — 2m respectively. Then use (1.32)
in the first case and (1.30) in the second. O

An alternative approach. The evaluation in Example 6.2 can also be obtained by integrating

=InT(g) — Inv27 (6.7)

z=0

i( )
dzg“z,q
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to produce

1 1
d
/Bm<q>1nr<q>dq=1n¢2n/ Bu(@)dg + -
0 0 Z

1
/ Bu(@¢G.q)dg.  (68)
z=0J0

The relation (6.7) can be found in [16] 9.533.3. To evaluate (6.8) differentiate (3.10) to
produce

1
f Bu(@) I T(q)dq = 0 V2780 0 + (1 — 8y0.0) (= )" [Hn (=) + £ (—=m)].
0

Here §,, ¢ is Kronecker’s delta and H,, = 1 + % + -+ % is the m-th harmonic number.
Use has been made of the result

d
— (1 —2)x = —k!Hy. (6.9)
dz z=0
According to the parity of m we have
/IB (@@ d —¢'(—m) m=0,2,4,..., 6.10)
m{q)Inl{q)dq = , .
0 Hy.(—m)+¢'(—m) m=1,3,...

(for m = 0 we have used (1.33)). The result (6.10) for odd m is seen to be equivalent to
(6.6) after use of the identity

¢'(1—2k) n ¢'(2k)
¢ =2k)  ¢(2k)

=In2r +y — Hy—1, keN, (6.11)

which can be derived by differentiating Riemann’s relation (1.34) and evaluating at
s = 2k.

Example 6.3. The case m = 1 in (6.6) yields, using ¢ (2) = 72/6,

1 /
/ <q—%) 1nr(q)dq=%(6§ (22) —21nv2ﬂ—y>. (6.12)
0

T

The case m = 1 in (6.5) gives

l 1 ¢@3)
2_ — —
/o (q 1 6) InT'(q) dq 42’ 6.13)
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Example 6.4. Letn € N. Then

L)
2 1 2k)!
/ ¢"InT(q)dg = —— Z(— ) (’” )k((zn))Zk [AZ(2k) — ¢'(2K)]
0

(n+1> (2k)! 12\/5 6.14)

72(2n)2k;(2k+1)+ T

Proof: Use the expression (1.22) to write

1 1
/ ¢"InT(q)dg = —— (”*. )/ InT(q)B;(¢) dgq
0 +1 J

—_— InT'(g) dg.
b /O nT(q)dq
The value
1
[ InT(g)dg = Inv2m (6.15)
0
is then obtained from (6.7) and (1.26). The result now follows from (6.5) and (6.6). O

The formula (6.14) yields

1 /
') 1 Y
InT(q)dg = —Inv2m — =,
/an(q)q 2n2+3n -1

)+@ —ld_

1
/ ¢InT(q)dg = > o
0

1
3 §' 3((3) 3¢ (4) 1
/(; q’InT(q)dgq = 7 871'2 e 1 V2r —

None of these examples could be evaluated symbolically.

Note. Gosper [15] presents a series of interesting evaluations of definite integrals of
InT"(g). For example

—+ — — —

327 1302 3¢'2) 1
Y 2aver 1 ¢@ 1 (6.16)
8 4 24 4z 2

1/2
/ Inl'(g +1)dqg =
0

and

/4 3y 727 In2 92 G 1
InT Ddg=="2 4+ —""— =274 — 6.17
/0 nlg +Ddg = =5+ —¢ > " l6n? Tax a ©1D
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where
G := Z =D (6.18)

is Catalan’s constant.

Note. The results discussed here and those of Gosper’s referred to in the previous note are
special cases of the indefinite integral

anrl

n+1

/01” InT(q)dg = —¢'(0)

n+l . qn+1—k Hk
! -1 I S k) — 3 ’
o ;( : k!(n+1—k)! [Q( ) Kt 1 k+1(Q):|

where H is the k-th harmonic number and

ad
;z(_kv CI) =

5 ¢(z,q)- (6.19)
Z

z=—k

These results can be expressed in terms Gosper’s negapolygammas ¥ (g) [15] in view of
the relation

H;
k+1

Lk, q) = Bii1(q) + q* ¢/ (0) + k! Y (q),

where

Y_1(g) =InT(g),
wmw/wm@@ k>2.

Details will appear in [10].

7. Differentiation results

In this section we discuss evaluation of certain integrals that appear from (3.1) after dif-
ferentiation with respect to the parameters z and z'. The special values z = O and 7 = 0
produce evaluations containing the loggamma function, in view of (6.7). In particular, as
was pointed out earlier, the result

1
/ InT(q)dg = In\27 (7.1)
0

follows directly from (6.7). The integrals considered here complement those considered in
Section 6.
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Proposition 7.1.  For z, 7’ € R, we have

' d , _2ard—-ora—-z)
/Od—zé“(z,q)é(z,q)dq—— IS

X [% + %tana)—2lnm+1ﬁ(l —Z)],

{2—z—7) cosw

(7.2)
where w = m(z — 7) /2 and ¥ () is the digamma function defined in (1.8).
Proof: Direct differentiation of (3.1). O
In particular, for z = 7/ = 0 we obtain (6.12).

Example 7.2. Differentiating (3.1) with respect to z and then 7/, evaluating at z = 7 = 0,
and using (6.7) yields

1 2 7'[2 1 4 2
f M@l dg="2 +2 4 Zymv2r + §(111\/271)
0

12 48 3
7’2 "
w2 + 22

—(y +2In+27) . (7.3)

Example 7.3. Differentiating (5.1) with respect to z and then setting z = 0 yields, after
using (5.6),

1 2
/ Insinzg InT(q) dg = —In 2In~/27 — 727—4. (7.4)
0

8. An expression for Catalan’s constant

In his discussion of Entry 17(v) of Chapter 8 of Ramanujan’s Notebooks, Berndt [9] page
200, introduces the function

G(z,q9) =tz q) — ¢z 1—¢q) (8.1

and gives its Fourier expansion
o0

inQ2rk
G(z,q) = 4T(1 —@Cos(%) ;% 8.2)

This is an immediate consequence of the Fourier expansion (1.24) for ¢(z, g).
In terms of G(z, g) we can define an anti-symmetrized Hurwitz transform,

1 1
A = 5 /0 Fw, )Gz, q) dg. (83)
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It is straightforward to show that for a function f(w, q) with Fourier expansion as in
Theorem (2.2) one obtains

I'(1 —z)cos (wz/2) i b, (w)

2m)1-2 nl-z° (8.4)

1 1
3 / fw,q)G(z,q)dg =
0

n=1

As a particular example we compute the anti-symmetrized Hurwitz transform of sec(rgq)
and obtain as a corollary an expression for Catalan’s constant.

Example 8.1. The anti-symmetrized Hurwitz transform of sec(wq) is

/ t(z,q) — ¢z, 1 —q) 16T°(1 = 2) cos(z/2) X (1) 2 (= 1F
dg = — E — .
cos(mq) 2m)2—= n'= =2k +1

n=1

Proof: 1In[16]3.612.5 we find

1 .. n—1 k
sin(2nmq) " (— 1)
f ————dg=(~ )*‘ § (8.5)
o cos(mq) 2k
A straightforward application of (8.4) completes the proof. O

The special case z =0 yields the following result.

Proposition 8.2. The Catalan constant G, defined in (8.18), is given by

00 (_1)n+l n—1 (_l)k
G= . 8.6
; ; 2k +1 (8.6)
Proof: Put z=0 in Example 8.1 to obtain

1 l n+1 n—1 k

(— 1) (—=1)
. 8.7
/0 cos(nq) a2 Z ; 2k + 1 ®.7)

The change of variable t = n(% — g) then produces

11 72
2 : 4G
f 2 4 dq:—/ L= (8.8)
o cos(mq) 72 Jy sint 2

since the second integral equals 2G. O

Note. The direct symbolic evaluation of the integral in (8.7) yields

1 1 33
I - 1 | 326G 11332
/ 2 qdq:— L F 22 1) +16In2 |,
o cos(mq) 160 | = 222°
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T 11232
G=—|16In2—,F 221 8.9
32[ n 43(222 )} 89

This form of Catalan’s constant appears in [25]: 7.5.3.120, and (8.8) is Entry 14 in the list
of expressions for G compiled by Adamchik in [1], but (8.6) does not appear there, nor in
the more complete compilation of Bradley [12].

and thus

Example 8.3. Letm € Ny. Then

162m + 1)! i (=t =L (=
(27-[)2m+2 n2m+1 = 2k + 1

4@m+ 1! 7 Y(n/2+ 1/4)

(271’)2m+2 n2m+1 ’

1
/ sec(1q) Bams1 (q) dg = (—1)™*! (8.10)
0

= (=" (8.11)
where the sum extends overn € Z, n # 0.

Proof: The value z =—2m in Example 8.1 yields (8.10). To prove (8.11) it is enough to
establish the identity

2 (=1t =L (= 2+1/4
Z( 2)+] (=D __Z Y(n/2+ /). 8.12)
nm 2k _|_ 1 n2m+l
n=1 k=0
The internal sum in (8.12) can be written as
SO0 T w2+ 14— png2+ 3] (8.13)
Zadk+1 4 4 " " ' '

Logarithmic differentiation of the reflection formula (1.36) for the gamma function yields
Y1 —x)=v¥(x)+mcotgmx,
so that, evaluating at x = 1/4 — n/2,
v(1/44+n/2) —v@B/4+n/2)y =y (1/4+n/2) —y(1/4—n/2) — (—1)'x.
Thus

S e
2k + 1

1
= Z(—l)” [v(1/4+n/2) =4 (1/4 =n/2)] (8.14)

k=0

and (8.12) is established. O



180 ESPINOSA AND MOLL

9. Clausen and related functions

In this section we evaluate the Hurwitz transform of the Clausen functions Cl,(g). These
functions are defined by

o0 . k
Cloy(x) =Y 2% n=1 ©.1)
k=1 k
and
2, coskx
Clay1 (1) 1= Y~ 12 0. 92)
k=1

Extensive information about these functions can be found in [20], Chapter 4. For example,
Cli(x) = —In|2sin(x/2)|.

More generally, one can define the Clausen functions in terms of the polylogarithm on the
unit circle as

Cly, (x) := ImLiy,(e™), (9.3)
C12n+1(-x) :=Re Li2n+l(eix)’
where, for |z| < 1,

0k

Li,(2) =Y Ii— neN. (9.4)
k=1

The Fourier expansion of Li, (z) on the unit circle,

[e¢]

‘ 2k > sin(2k
Li, () = 3 L(kf D 4 3 L(kf D g<g=<1, 9.5)
k=1 k=1

leads us, in view of Theorem 2.2, to the next example.

Example 9.1. Letz € R;;. Then

1 — LT
/ Li,(e”" )¢ (2, q) dg = LI_Z) 201 -z +n). 9.6)
0 Q2m)l—=

As immediate consequences we have the next three examples.
Example 9.2. Letz € R . Then

(1 —z)cos(mrz/2)
Qm)l—=

1 r
/ Cloy 27q)¢ (2, q) dg = (1 =2+ 2n) ©.7)
0
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and

(1 —z)sin(mz/2)
(277’—)172

1
r
/ Clyn12mq)e(z, q) dg = Q2 —z+2n). (9.8)
0

Example 9.3. Letm € N. Then

if m is even,

! 0
Bm Cl n 2rq)dg = m+l
/0 (9) Clan @) dg {(—1)7 m\(2) " ¢ (m +2n) if m is odd,

and

/IB @ Clous1 ) d 0 if m is odd,
m n v = m . .
0 D212 4) 4 (D2 m!Qr)™¢(m +2n+ 1) if miseven.

Example 9.4. Letm € N. Then

Lij (=) c@n+2j + 1)

(m —2j)! Qm)2/+!

1
/ q" Cly, (2 q) dg = m!
0 j=0

and

,7
N

H(Cyit c@n 2+ 1)
m—2j+ ) Qm)¥

1
/ q" Clay1(2wg) dg = m!
0 1

J

10. Eisenstein series

In this section we compute the Hurwitz transform of functions related to the Eisenstein
series G (7).
The Eisenstein series defined by

P
Gu(r) =) ——— (10.1)

£= (mt + n)2k’
fork > 2 and v € C with Im 7 > 0, are periodic functions with expansion ([26], page 92):

(—DF@r)* &
ka=2¢(2k>+2wgm_l<n>e2 : (10.2)

where

oy(n) := ZdS. (10.3)

din
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These series appear as coefficients in the cubic
y? = 4x3 — 60G,x — 140G; (10.4)

that represents the torus C/LL, with L. = Z & tZ. See [22] for details.
Write T = ¢ +it, witht > 0 and 0 < g < 1. The expansion (10.2) becomes

Gi(g +it) =2¢(2k +2Mi —2mnt 2mkq) + i sin(Qrkq)
(g +it) =2¢(2k) kD! nz}agk,l(n)e (cos(2mkq isin(2rkq)),

so the Fourier coefficients of Gy (g + it) are

_ 2(—1)"(271)2"
T k=1

—2mnt

and b, =ia,. (10.5)

ox—1(n)e

We were unable to evaluate the corresponding Dirichlet series arising from (10.5). Instead
we consider the functions

G (q) = /0 1* [Gi(q + it) — 20(2k)] dt, (10.6)

where « € R*. We then have the following result.

Example 10.1. The Hurwitz transform of G,(f‘) (q) fora > z+2k —2is

1 ‘ —inz/2 F(Ol + 1)1’*(1 _ Z)
(@ _ ¢
/0 G (@8 g)dq = 2mi e FOOT G o — 2 — 26)
XER4+a—-2)0@+a—z—2k), (10.7)

where z € R;.

Proof: The Fourier coefficients of G,(f’) (g) are

(=D em)* ! oy (n)

T (a+1
a @+ D=5 ot

and b, =ia,. (10.8)

The main theorem then yields

1 N(_ 1k ,—imz/2 00
/ G,(ca)(q)g“(z,q)dqz 2I' (e + DIT(1 — 2)(—=1)*ie ooi—1(n)

0 Qk — DQr)2-—te Lo piita

The last series is identified in [5], page 231, as

Z Gl;in) ={(s)¢(s — p), Res > max{l, 1+ Rep} (10.9)

n=1

which, for 2 — z + « > 2k, implies (10.7) after using Riemann’s relation (1.34). O
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11. A trigonometric example

In this section we compute the Hurwitz transform of powers of sine and cosine, and some
related integrals.

Example 11.1. Letz € R, and n € N. Then
1 L -2 ™) 3 (=D [ 2n
. on _ .
A sin (ﬂq);(z,q)dq— W sSin <7> kI*Z <n_k> (111)

Example 11.2. Letm, n € Ny. Then

1
/ Bae () sin® (uq) dg = 0, (112)
0
and
1 m+1 n k
. (=" (2m)! (=D ( 2n
By, n dg = . 11.3
/O 2m(q) sin™ (q) dgq 22n71(2n-)2m kZ_; k2m (n—k) ( )

The proof is a direct consequence of results (2.2) and (2.3) for the Fourier coefficients of
the Hurwitz zeta function, once we expand sin*' (r¢) using a formula of Kogan [17]

n n—1
sin? x = 2;( ) (zznl)] Z( l)k< )cos[Z(n—k)x]. (11.4)

Note. Formulae similar to (11.4) exist for other powers of sine and cosine [17]. The same
technique used above can be thus applied to obtain the Hurwitz transform of sin**! (27 ¢),
cos?(mq) and cos?* ' (2mq).

Example 11.3. Forn e N

' in? YInT(q)dg = —— ! (1)k( ) 1( )1«/_ (11.5)
/Osm(nqnqq 22n+1 nk+ﬁ n«2mw .

Proof: Simply use (6.7), (11.1) and Wallis’ formula

. 1 (2n
sin”(wrq)dq = — . (11.6)
0 22n n
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12. The case 7 positive and polygamma functions

In this section we extend some of the previous formulae to the case z € R™ and use them
to evaluate the moments of the polygamma functions.

Although the formulae of the previous sections were derived under the assumption z < 0,
so that the Fourier expansion (1.24) could be used, they can be analytically extended to those
positive values of z where the integral in question converges. This is so because the Hurwitz
transform (1.27) defines an analytic function of z as long as the defining integral converges.
For z > 0 the only singularity of {(z, ¢) in the range 0 < ¢ < 1 lies actually at ¢ = 0,
where it behaves as ¢ ~*. In fact,

1
$(z,q) = ;-l-((z,q—l-l), (12.1)

with ¢(z, g) finite for ¢ > 1. The relation (12.1) follows directly from the definition (1.1)
of the Hurwitz zeta function when Rez > 1 and can be extended to the whole punctured
complex z-plane, C — {1}, for g > 0.

Example 12.1. 'The formula (3.10) derived in Example 3.5, namely

1m!§(z_m)
(I=2m

holds for real z < 1 if m equals one or an even integer, and for z < 2 otherwise.

’

1
/0 Bu(@)¢(z. q)dq = (—1)"*

Proof: From (1.21) it is seen that near ¢ = O the Bernoulli polynomials behave as
Bu(q) = By +mBu_1g+0(q*), m=1.

Thus, the integrand B,,(¢)¢ (z, ) behaves as ¢ —% or ¢! %, according if B,, # 0 or not. The
result now follows from the fact that the singularity g = is integrable for0 < o« < 1. O

Example 12.2. The formula (3.5) derived in Example 3.2, namely

1
/ ¢3(z,q)dg = 2T (1 — 2)2m)=72¢(2 — 22)
0
holds for real z < 1/2.

Proof: This follows directly from (12.1) and a reasoning similar to the proof of the
previous example. O

Example 12.3. Letn € Ny and z € Rsuchthatn — z + 1 > 0. Then,

1 n—1
{z—k—1)
" (e 0y da = ! )k ) 12.2
'/0 q"¢(z,q)dg=n ;( ) (n—k)!( —2)ke1 ( :
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Proof: From Theorem 3.7 the equation above holds for z < 0. The integrand ¢" ¢{(z, q)
behaves as ¢" % as ¢ — 0, so the integral exists as long asn —z 4+ 1 > 0. Now use analytic
continuation. O

Based on the result of the last example, we now evaluate the moments of the polygamma
functions, defined as

dl’l

(n) -
v(2) = 2

¥(z), neNo, (12.3)

where ¥ (z) = ¥/ (z) is the digamma function defined in (1.8).
The polygamma functions can be expressed in terms of the Hurwitz zeta function as (see
[27], Chapter 44)
v () = (=) mlicm+1,q9) m=1,2,... (12.4)

and

1
V(g) = lim [Tl -z, q)} . (12.5)

Z

Theorem 12.4. Letn,m € Nwithn > m. Then

1 m—2 _ _
/ ¢V (@) dg = (~1)"— [n (- m)! > s =0
0

(n—m)! —m+1 = (n—k)!
n—m—1 L(n—m
+ Z (=D ( r )[Hk§(—k) + §/(—k)]:|~ (12.6)
k=0

Proof: We compute the limit as z — m + 1 in Eq. (12.2). Substitute z = m + 1 — ¢ in
(12.2) and let ¢ — 0. We encounter two types of singularities as ¢ — 0: one corresponding
to the pole of £ (s) at s = 1, for k = m — 1, and the other corresponding to the vanishing of
the Pochhammer symbol (—m)y1, fork =m,m+1, ..., n — 1. To derive (12.6) consider
the Laurent expansion of (12.2) about & = 0 up to order £°. The following expansions are
employed:

§(1—8)=§+V+0(8),

((=r—g)=20¢(=r)—el'(-r)+0(), r=0,1,2, ...,

ron+)—39=9  _imeto (127
(m + )m— + H, e+ O(¢e),

P4 HLCr=e) UL o a0 —0.1,2
mt DT = | e | T 0@, r=0.1.2...
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A direct calculation yields

—k—1 1 1
(—DF (e ) =————|-+H,— V]|,
n—k)!1 — 2Dr41 lgfmjllfa m!n—m—1)! ¢
and, forr =0,1,....,n—m — 1,
k=D _
n—k)! — 2Dr1 kz_=mi—1—s m!ri(n —m +r)!

x [“;r) + (Hy — H) t(—r) — ;’(—r)]

The coefficient of the singular term 1/¢ is

1 1 n—m—1 1r<n_m )
m!(n —m)! n—m+l+ — =D , )4(—" )

r

which vanishes in view of the identity

! (i1 1
rg(—n( ) );(—r)——m. (12.8)

The rest of the terms can be collected to yield (12.6), after multiplying by the overall factor
(=)™ m!in (12.4). O

Along similar lines, we can use relation (12.5) to prove the following result.

Theorem 12.5. Forn € N,
1 n—1
/ 4" V(@) dg=1'0) + Y (~1)F (Z) [HS (0 +¢ (b (12.9)
0 k=1

Proof: Example 12.3 and (12.5) yield

1 1 1
/ q"¥(q)dq = lim/ q" [— —€(z,q)] dq
0 z—1 0 Z—l
o 1 T D —k =)
=lim |:n+l H(Z_IH”!,; n—)!(2— 2

and (12.9) follows by 1’Hopital’s rule. O
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13. Conclusions

We have evaluated a series of definite integrals whose integrands involve the Hurwitz zeta
function.

Most of the formulae involving elementary functions and InI"(g) can be considered to
be special cases of Theorem 3.1, in view of the relations (1.19), (6.7) and (1.36), the latter
written in the form

InT'(g) +InT'(1 —g) =Inm — Insinng, (13.1)

which respectively relate the Bernoulli polynomials, the logarithm of the gamma function
and thus also the function Insinq to {(z, ¢) in a linear way.
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Notes

1. |x] is the floor of x.
2. The factor m! in (4.3) is missing in [25].
3. The sum is over Z2 — (0, 0).
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