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Abstract. We establish a relation among the arc lengths of a hyperbola, a
circle and an ellipse.

1. Introduction

The problem of rectification of conics was a central question of analysis in the
18th century. The goal of this note is to describe Landen’s work on rectifying the
arc of a hyperbola in terms of an ellipse and a circle. Naturally, Landen’s language
is that of his time, in terms of fluents and fluxions, and his arguments are not
rigorous in the modern sense.

The main result presented here is a special relation between the length of an
ellipse, the length of a hyperbolic segment, and the length of circle. The proof is
based on a generalization of Euler’s formula for the lemniscatic curve as described
in [4].

2. The hyperbola

The arc length of the equilateral hyperbola

h(t) =
√
t2 − 1, t ≥ 1(2.1)

starting at t = 1 is given by

Lh(x) =
∫ x

1

√
2t2 − 1
t2 − 1

dt(2.2)

as a function of the terminal point t = x. The tangent line to the hyperbola at
t = x is

Th(t) =
√
x2 − 1 +

x√
x2 − 1

(t− x),(2.3)

whose intersection with the t-axis is t = 1/x ∈ (0, 1). The line

Nh(t) = −
√
x2 − 1
x

t(2.4)

is the perpendicular to Lh passing through the origin. The lines Th and Lh intersect
at the point

Ph =

(
x

2x2 − 1
,−
√
x2 − 1

2x2 − 1

)
.(2.5)
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The distance from (x, h(x)) to the common point Ph is

gh(x) = 2x

√
x2 − 1
2x2 − 1

.(2.6)

It was observed by Maclaurin, D’Alambert, and Landen that

fh(x) := gh(x)− Lh(x) = 2x

√
x2 − 1
2x2 − 1

−
∫ x

1

√
2t2 − 1
t2 − 1

dt(2.7)

is easier to analyze than the arc length Lh(x).

Proposition 2.1. Let

Fh(z) =
1
2

∫ 1

z

√
t

1− t2
dt.(2.8)

Then

Fh(z) = fh(x),(2.9)

where

z =
1

2x2 − 1
.(2.10)

Proof. Make the change of variable (2.10) in (2.7). Then fh(x) becomes

Fh(z) =

√
1− z2

z
+

1
2

∫ z

1

ds

s3/2
√

1− s2
.(2.11)

in terms of the new variable z = 1/(2x2 − 1). Since

d

ds

√
1− s2

s
=

−1− s2

2s3/2
√

1− s2
,

integrating from 1 to z reduces (2.11) to (2.8).

3. The ellipse

The equation of the ellipse can be written as

e(t) =
√

2(1− t2), |t| ≤ 1.(3.1)

In this case the tangent line at t = r is

Te(t) =
√

2(1− r2)−
√

2r2

1− r2
(t− r),

and the line

Ne(t) =

√
1− r2

2r2
t

is the perpendicular to Te through the origin. These two lines intersect at the point

Pe =

(
2r

1 + r2
,

√
r(1− r2)
1 + r2

)
,(3.2)

and the distance from (r, e(r)) to the common point Pe is

ge(r) = r

√
1− r2

1 + r2
.(3.3)



3

We express the function ge in terms of the new variable z = r2 as

ge(z) =

√
z(1− z)

1 + z
.(3.4)

4. The connection

We now evaluate the function Fh(z) in (2.8) at two points y, z ∈ (0, 1) related
via the bilinear transformation z = (1− y)/(1 + y). We have

Fh(z) + Fh(y) =
1
2

∫ 1

y

√
s

1− s2
ds+

1
2

∫ 1

z

√
s

1− s2
ds.

The change of variable σ = (1− s)/(1 + s) in the second integral yields

Fh(z) + Fh(y) =
1
2

∫ 1

y

√
s

1− s2
ds+

1
2

∫ y

0

√
1− σ

(1 + σ)3/2
√
σ
dσ.

Now recall the function ge(z) in (3.4) and its differential

dge
dz

=
1
2

√
1− z√

z(1 + z)3/2
− 1

2

√
z√

1− z2
.

Therefore

Fh(z) + Fh(y) = ge(z)− ge(1) +
1
2

∫ 1

0

√
t√

1− t2
dt.

Now observe that ge(1) = 0 and introduce the absolute constant

L :=
1
2

∫ 1

0

√
t√

1− t2
dt(4.1)

so that

Fh(z) + Fh(y) = ge(z) + L.(4.2)

Thus we have established the following integral relation.

Theorem 4.1. Let y ∈ (0, 1) and z = (1− y)/(1 + y). Then

1
2

∫ 1

y

√
s

1− s2
ds+

1
2

∫ 1

z

√
s

1− s2
ds =

√
z(1− z)

1 + z
+ L(4.3)

with the absolute constant L in (4.1).

Proof. Let

Gh(z) = Fh(z) + Fh(y)

=
1
2

∫ 1

(1−z)/(1+z)

√
s

1− s2
ds+

1
2

∫ 1

z

√
s

1− s2
ds,

so that
dGh(z)
dz

=
1
2

√
1− z√

z(1 + z)3/2
− 1

2

√
z√

1− z2
.(4.4)

Integrating (4.4) gives

Gh(z) =

√
z(1− z)

1 + z
+ L(4.5)
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By letting z = 0, the constant L is easily evaluated as

L :=
1
2

∫ 1

0

√
t√

1− t2
dt(4.6)

=
1
2

∫ π/2

0

√
sin θ dθ

=
π
√

2π
Γ2(1/4)

using Wallis’ formula.

We now follow Landen to establish the value of L in terms of elliptic arcs.

The equation (4.2) simplifies if we evaluate it at the fixed point z∗ =
√

2− 1 of
the transformation z = (1− y)/(1 + y). In terms of the x variable, the fixed point
is

x∗ =

√
1 +

1√
2

=
√

2 cos(π/8).(4.7)

Indeed

Fh(z∗) =
1
2

(
√

2− 1 + L).(4.8)

Now introduce the complementary integral

M :=
1
2

∫ 1

0

dt√
t(1− t2)

,(4.9)

and observe that

L+M = Le(1) =
1
2

∫ 1

0

√
1 + t

t(1− t)
dt

where Le(1) is a quarter of the length of the ellipse.

Theorem 4.2. The integrals L and M satisfy

L+M = Le(1)

L×M =
π

4
.

Therefore

L =
1
2

(
Le(1)−

√
Le(1)2 − π

)
M =

1
2

(
Le(1) +

√
Le(1)2 − π

)
.

Proof. Observe that for q ∈ Q we have

d( tq
√

1− t2)
dt

=
qtq−1 − (q + 1) tq+1

√
1− t2

(4.10)

and integrating from 0 to 1 we obtain∫ 1

0

tq−1

√
1− t2

dt =
q + 1
q

∫ 1

0

tq+1

√
1− t2

dt.(4.11)
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For example, with q = 3/2 it yields

2L =
∫ 1

0

t1/2√
1− t2

dt =
5
3

∫ 1

0

t5/2√
1− t2

dt

Iteration of this recurrence yields, after m steps,

2L =
2m+1∏
j=1

(2j − 1)(−1)j+1
∫ 1

0

t2m+1/2

√
1− t2

dt.(4.12)

Similarly, starting with q = 1/2 we get after m steps

2M =
2m∏
j=1

(2j − 1)(−1)j
∫ 1

0

t2m−1/2

√
1− t2

dt.(4.13)

Iteration of (4.10) with initial values q = 0 and q = 1 yields for

A :=
∫ 1

0

dt√
1− t2

=
π

2

and

B :=
∫ 1

0

t dt√
1− t2

= 1,

the expressions

A =
2m∏
j=1

j(−1)j
∫ 1

0

t2m dt√
1− t2

B =
2m∏
j=1

(j + 1)(−1)j
∫ 1

0

t2m+1 dt√
1− t2

and

2L
A

=
2m∏
j=1

(2j − 1)(−1)j+1
j(−1)j+1

∫ 1

0
t2m+1/2(1− t2)−1/2 dt∫ 1

0
t2m(1− t2)−1/2 dt

× (4m+ 1).

and

2M
B

=
2m∏
j=1

(2j − 1)(−1)j j(−1)j
∫ 1

0
t2m−1/2(1− t2)−1/2 dt∫ 1

0
t2m+1(1− t2)−1/2 dt

× 1
2m+ 1

.

As m→∞, the quotient of the integrals converges to 1 and we obtain

2L× 2M =
π

2
lim
m→∞

4m+ 1
2m+ 1

= π.(4.14)

We now write π/2 = Lc(1) as a quarter of the length of the circle in analogy to
Le(1).

Theorem 4.3. The length of the hyperbolic segment is given by

Lh

(√
1

2−
√

2

)
=
√

2 + 1
2

− 1
4

√
(Le(1)2 − 4Lc(1))− Le(1).(4.15)
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