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ABSTRACT. We establish a relation among the arc lengths of a hyperbola, a
circle and an ellipse.

1. INTRODUCTION

The problem of rectification of conics was a central question of analysis in the
18" century. The goal of this note is to describe Landen’s work on rectifying the
arc of a hyperbola in terms of an ellipse and a circle. Naturally, Landen’s language
is that of his time, in terms of fluents and flurions, and his arguments are not
rigorous in the modern sense.

The main result presented here is a special relation between the length of an
ellipse, the length of a hyperbolic segment, and the length of circle. The proof is
based on a generalization of Euler’s formula for the lemniscatic curve as described
in [4].

2. THE HYPERBOLA

The arc length of the equilateral hyperbola

(2.1) W)=V -1, t>1

starting at ¢t = 1 is given by

(2.2) Li(z) = /j ,/% dt

as a function of the terminal point ¢ = x. The tangent line to the hyperbola at
t=uxis

(2.3) Th(t) = Va2 -1+ \/%(t — ),

whose intersection with the ¢-axis is ¢t = 1/x € (0,1). The line

21
(2.4) Ny(t) = — Y2 "2y
x
is the perpendicular to Ly passing through the origin. The lines T}, and Lj, intersect

at the point

T 2 —1
2.5 P, = _ .
(2:5) h <2x2—1’ 2302—1)
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The distance from (z, h(z)) to the common point Py, is

z2—1

222 —1°

It was observed by Maclaurin, D’Alambert, and Landen that

(2.7) fu(z) = gnl(z)— Vr_iz /“vrf?E

is easier to analyze than the arc length Ly (x)

(2.6) g(@) = 2

Proposition 2.1. Let

(2.8) Fu(z) = % / 1\/26575

Then

(2.9) Fu(z) = fu(z),
where

2.10 = L
(210) S

Proof. Make the change of variable (2.10) in (2.7). Then f5(x) becomes

/1—22
2.11
(211) / $3/2\/1— 52 1—52

in terms of the new variable z = 1/(222 — 1). Since

d [1—-s2 —1-s?
ds s C2s3/2y1 _ §2’
integrating from 1 to z reduces (2.11) to (2.8). O

3. THE ELLIPSE
The equation of the ellipse can be written as
(3.1) e(t) = 2(1—1¢2), [t <1

In this case the tangent line at t = r is

VR =) = 2 (-,

1— 2

/1—1r2
Ne(t) = Wt

is the perpendicular to T, through the origin. These two lines intersect at the point

2r r(1—1r2)
32 Pe = 9 9
(8:2) <1+ﬂ 1+7r2

and the distance from (r,e(r)) to the common point P, is

(3.3) ge(r) = r\/%.

and the line




We express the function g, in terms of the new variable z = r? as

z(l—z).

(34) 02) = |5

4. THE CONNECTION

We now evaluate the function Fh( ) i (2 8) at two points y, z € (0,1) related
via the bilinear transformation z = . We have

Fy(2) + Fr(y /\/:der /\/:

The change of variable o = (1 —8)/(1 + s) in the second integral yields

/ Vi—o
F(2)+ Fr(y) = 1—82d S+ — / 1+O_3/2 do‘

y
Now recall the function g.(z ) (3.4) and its differential

dge _ 1 Vl-2z 1 /2
dz 2z(1+2)3/2 21— 2
Therefore
Fn(z) + F = ez—el—l——/idt
Now observe that g.(1) = 0 and introduce the absolute constant
L[Vt
(4.1) L := —/ vi dt
2 )0 V1—1t2
so that
(4.2) Fu(2) + Fu(y) = ge(2) + L.

Thus we have established the following integral relation.

Theorem 4.1. Let y € (0,1) and z = (1 —y)/(1 + y). Then

(4.3) /\/:ds+ / 1_32 \/?

with the absolute constant L in (4.1
Proof. Let
Gn(z) = Fn(2)+ Fu(y)

so that

(4.4) -

Integrating (4.4) gives

(4.5) Gr(z) = + L
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By letting z = 0, the constant L is easily evaluated as

1t Ve
4.6 L = = dt
(16) 5| =
1 7\'/2
= = / Vsin 0 df
2 Jo
_ T2
- I2(1/4)
using Wallis’ formula. O

We now follow Landen to establish the value of L in terms of elliptic arcs.

The equation (4.2) simplifies if we evaluate it at the fixed point z* = v/2 — 1 of
the transformation z = (1 — y)/(1 4+ y). In terms of the x variable, the fixed point
is

o= 2 cos(m
(4.7) ot = 1/1+\/§—\/§ (w/8).

Indeed
(4.8) F(z*) = %(\/5—1+L).

Now introduce the complementary integral

(4.9)

Mo 1/1 dt
. 2 0 ,7t(1—t2)7

1/t 1+t
L+M:Le(1):§/0 t(l—t)dt

where L.(1) is a quarter of the length of the ellipse.

and observe that

Theorem 4.2. The integrals L and M satisfy

L+M = L.1)
LxM = T
4
Therefore
1
_ - _ 2 _
L = 2(17;6(1) L) w)
1
I 2 _
M = 2(Le(1)+ L.(1) 7r>.

Proof. Observe that for ¢ € Q we have

(4.10) d(t1VT—1) gttt — (g4 1)1t

dt ~/17t2

and integrating from 0 to 1 we obtain

(4.11) /1 g = ‘Hl/l A
0o V1—1t2 q 0o V1—1t2



For example, with ¢ = 3/2 it yields

1 t1/2 5 1 t5/2
2L = —dt = = —dt
0o V1—1t2 3Jo V1—t2
Iteration of this recurrence yields, after m steps,
2m+1 . 1 42m+1/2
J+1 t
(4.12) 2L = (25 — 1))=Y / dt
jl;ll o V1—1t2
Similarly, starting with ¢ = 1/2 we get after m steps
2m (1)’ 1 42m—1/2
4.13 2M = 25 — 1)\~ ——dt.

Iteration of (4.10) with initial values ¢ = 0 and ¢ = 1 yields for

b [
T 0\/1—t2_

T
2

and

1
B / tdt _1
o V1—1t2

the expressions

2m Crl og2m
A = Hj(_l)y =" dt
Jj=1

0o V1-—t2
2m ) 1 2m+1
J t dt
B = J[G+n""V | —
jl;g 0o V1-12
and
i ; o [RgemaA1/2q g2y-1)2
2L : Lot 1t dt
A (2j — 1) DT Jo i ( ) « (4m 1 1),
j=1 fo 2m(1 — ¢2)-1/2 4t
and
2m ) Crliom—1/201 _ 42\—-1/2
M- [T - e Jo't (L) V2dt 1
B j=1 fol t2m+1(1 —¢2)-1/2qt  2m+1

As m — o0, the quotient of the integrals converges to 1 and we obtain
T I dm+1

(4.14) 2L x2M = — lim =T
2 m—oo 2m +1

O

We now write /2 = L.(1) as a quarter of the length of the circle in analogy to
Le(1).

Theorem 4.3. The length of the hyperbolic segment is given by

1)\/§+1

1 2
(4.15) Lh< =7 5 71\/(Le(1) —4L.(1)) — Le(1).
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