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Abstract. A sequence of coefficients that appeared in the evaluation of a

rational integral has been shown to be unimodal. The original proof is based

on a inequality for hypergeometric functions. A generalization is presented.

1. Introduction

A sequence of numbers {ak : 0 ≤ k ≤ n} is called unimodal if there is an index
k∗ such that ak−1 ≤ ak for 1 ≤ k ≤ k∗ and ak−1 ≥ ak for k∗ + 1 ≤ k ≤ n. The
prototypical example of unimodal sequences is ak =

(
n
k

)
. A polynomial P (x) is

called unimodal if its sequence of coefficients is unimodal.
A simple criteria for unimodality of a polynomial was established in [4]:

Theorem 1.1. If P (x) is a polynomial with positive nondecreasing coefficients,
then P (x+ 1) is unimodal.

The original motivation for this result was the question of unimodality of the
polynomial

(1.1) Pm(a) =

m∑
`=0

d`(m)a`

with

(1.2) d`(m) = 2−2m
m∑
k=`

2k
(

2m− 2k

m− k

)(
m+ k

m

)(
k

`

)
.

This example appeared in the evaluation of the formula

(1.3)

∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
=
π

2

Pm(a)

[2(a+ 1)]m+1/2

given in [5]. A variety of proofs of (1.3) can be found in [3] and properties of the
coefficients {d`(m)} have been reviewed in [26].

A property stronger than unimodality is that of log-concavity : a sequence of
positive numbers {ak : 0 ≤ k ≤ n} is called log-concave if a2k ≥ ak−1ak+1 for
1 ≤ k ≤ n − 1. As before, a polynomial is called log-concave if its sequence of
coefficients is log-concave. The log-concavity of Pm(a) was first established by
M. Kauers and P. Paule in [23] using computer algebra, in particular algorithms
for automatically deriving recurrences for multiple sums and Cylindrical Algebraic
Decomposition (CAD). A variety of classical techniques have been used in this
problem by W. Y. Chen et al in [10, 11, 12, 13].
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The original proof of unimodality for Pm(a) in [6] was based on the monotonicity
of

(1.4) T (m) =

m+1∑
r=2

(
2r

r

)(
m+ 1

r

)
(r − 1)

2r
(
4m
r

) .
This proof was revisited in [2] and the hypergeometric representation

(1.5) T (m) = 1− 1F2

( 1
2 ,−1−m
−4m

∣∣∣∣2)+
m+ 1

4m
1F2

( 3
2 ,−m

1− 4m

∣∣∣∣2)
was used to give a new proof of the monotonicity of T (m) and also to establish the

value lim
m→∞

T (m) = 2−
√

2.

The monotonicity of T (m) yields a curious inequality, that is transformed via
contiguous identities for hypergeometric functions to the form

2F1

( 3
2 ,−m− 2

−4m− 4

∣∣∣∣2)− 2F1

( 3
2 ,−m− 1

−4m

∣∣∣∣2) >

3

[
2F1

( 1
2 ,−m− 2

−4m− 4

∣∣∣∣2)− 2F1

( 1
2 ,−m− 1

−4m

∣∣∣∣2)]
The goal of this note is to prove the generalization of the previous inequality con-
jectured in [2]. The main result is stated next.

Theorem 1.2. The inequality

2F1

( 3
2 ,−m− 2

−4m− 4

∣∣∣∣4x)− 2F1

( 3
2 ,−m− 1

−4m

∣∣∣∣4x) >

3

[
2F1

( 1
2 ,−m− 2

−4m− 4

∣∣∣∣4x)− 2F1

( 1
2 ,−m− 1

−4m

∣∣∣∣4x)]
holds for x ≥ 1

2 .

2. An automatic proof

This section provides an automatic proof of Theorem 1.2. The main result is
first rewritten using
(2.1)

`m(x) = 2F1

(
3
2 ,−m− 2
−4m− 4

∣∣∣∣ 4x

)
, and rm(x) = 3 2F1

(
1
2 ,−m− 2
−4m− 4

∣∣∣∣ 4x

)
,

in the form

(2.2) `m(x)− `m−1(x) > rm(x)− rm−1(x).

The expansion of the terms in the previous inequality becomes nicer if written as

Lm(x) := `m(x)− rm(x) > `m−1(x)− rm−1(x) = Lm−1(x).

Using any of the packages [14, 25] dealing with symbolic summation and holonomic
closure properties that are available nowadays, it is easy to discover (and thus
prove) a second order recurrence satisfied by Lm(x). In theory, this would make this
inequality accessible to the automatic inequality prover developed by S. Gerhold and
M. Kauers [18, 20, 21]. These methods need as input only a defining recurrence and
sufficiently many initial values. This method uses as an essential tool Cylindrical
Algebraic Decomposition [8, 15, 16] (CAD), which was introduced to solve the
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problem of quantifier elimination over the field of real numbers. Given a quantified
logical formula of polynomial equalities and inequalities, it computes an equivalent,
quantifier-free formula. If the given formula does not contain any free variables,
then the output is one of the logical constants true or false. The input class can
be generalized to rational or algebraic functions, since these kinds of functions can
be expressed in terms of polynomial equalities. For a recent overview on how and
when to apply CAD see [22].

The run-time and memory requirements of CAD computations depend doubly
exponential (in the worst case) on the number of variables and the degrees of the
appearing polynomials. For the inequality discussed here, the calculations did not
terminate within a reasonable amount of time. The recurrence is linear and only
of order two, but the polynomial coefficients have degree 16 in m and degrees 9, 10
in x. This might explain the lack of termination in a reasonable time. Besides the
computational complexity, this may also be because the method of Gerhold and
Kauers is not an algorithm in the strict sense, since termination is not guaranteed
for an arbitrary input [24, 28]. Despite this fact, this procedure has been applied
successfully in proving different non-trivial inequalities, e.g., on orthogonal polyno-
mials [1, 19, 27]. For the inequality at hand the approach does not seem to succeed
and hence a different line of computer-assisted proof that also exploits CAD has
been chosen.

The series expansion of Lm(x) can be computed as follows,

Lm(x) =
∑
k≥0

((
3
2

)
k
− 3

(
1
2

)
k

) (−m− 2)k
(−4m− 4)kk!

(4x)k

= −2 +
∑
k≥2

(−m− 2)k
(
1
2

)
k

(−4m− 4)kk!
(k − 1)22k+1xk = −2 +

∑
k≥2

c(m, k)xk,

with coefficients

c(m, k) =
(−m− 2)k

(
1
2

)
k

(−4m− 4)kk!
(k − 1)22k+1.

Here (a)k = a(a + 1) · · · (a + k − 1) denotes the Pochhammer symbol (or rising
factorial). Note that the sums above are finite (and thus the Lm(x) are polynomials)
because of the factor (−m− 2)k in the numerator.

It is easy to see that for k ≥ 2 and any m ≥ 2 these coefficients are non-
negative. The only negative contributions stem from the Pochhammer symbols in
the numerator and denominator with the same number of factors. The coefficients
c(m, 1) vanish and the constant coefficients c(m, 0) = −2 for all m. Hence the
forward difference considered here may be written as

Lm(x)− Lm−1(x) =

m+1∑
k=2

(
c(m, k)

c(m− 1, k)
− 1

)
c(m− 1, k)xk + c(m,m+ 2)xm+2,

with the shift quotient ρ(m, k) = c(m, k)/c(m− 1, k) given by

ρ(m, k) =
(m+ 2)(−k + 4m+ 1)(−k + 4m+ 2)(−k + 4m+ 3)(−k + 4m+ 4)

8(m+ 1)(2m+ 1)(4m+ 1)(4m+ 3)(−k +m+ 2)
.

This shift quotient is a rational function, hence it is suitable as input for a CAD
computation. Since x ≥ 1

2 , and c(m,m + 2) > 0 for m ≥ 0, it would be sufficient
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to prove that ρ(m, k) ≥ 1 for all m, k. This is not the case, but for k,m ≥ 7 CAD
quickly shows that the shift quotient is bounded from below by one:

In[1]:= Resolve[ForAll[{m,k},m ≥ 7 && 7 ≤ k ≤ n+ 1, ρ[m,k] ≥ 1], {},Reals]

Out[1]= True

These simple observations gave rise to the idea to truncate Lm(x)−Lm−1(x) at a
fixed level that is provably positive and then to show that the tail of the expansion
of Lm(x)−Lm−1(x) is non-negative. All these steps can be carried out using CAD.
The outline of the proof is as follows:

(1) Prove that Lm(x)− Lm−1(x) > 0 for m ≤ 6.
(2) Prove that the truncated version of the inequality with k running from 2

to 6 is positive for all m ≥ 7.
(3) Prove that the tails are non-negative.

The first cases for m ≤ 6 are checked independently using CAD. Note that for m = 1
the inequality is strict only for x > 1

2 (L1( 1
2 ) = 0). In the problem considered here,

the Mathematica implementation of CAD [29] has been used, but certainly any
other computer algebra system capable of executing CAD [7, 17, 9] would be able
to handle the given inequalities. In Mathematica the commands can be executed
as follows (where L[m,x] = Lm(x)),

In[2]:= Resolve[ForAll[x, x > 1
2
, L[1, x]− L[0, x] > 0], {},Reals]

Out[2]= True

In[3]:= Table[Resolve[ForAll[x, x ≥ 1
2
, L[m,x]−L[m−1, x] > 0], {},Reals], {m, 2, 6}]

Out[3]= {True,True,True,True,True}

In the second step we consider the truncated power series that is a polynomial
in m and x of fixed degree,

Tm(x) = −2 +

6∑
k=2

c(m, k)xk

= −2 +
3(m+ 2)x2

4m+ 3
+

10m(m+ 2)x3

(2m+ 1)(4m+ 3)
+

105(m− 1)m(m+ 2)x4

2(2m+ 1)(4m+ 1)(4m+ 3)

+
63(m− 2)(m− 1)(m+ 2)x5

(2m+ 1)(4m+ 1)(4m+ 3)
+

1155(m− 3)(m− 2)(m− 1)(m+ 2)x6

4(2m+ 1)(4m− 1)(4m+ 1)(4m+ 3)
.

The following CAD computation quickly verifies that Tm+1(x) − Tm(x) > 0 holds
for m ≥ 7 and x ≥ 1

2 ,

In[4]:= Resolve[ForAll[{m,x},m ≥ 7 && x ≥ 1
2
, T [m,x]−T [m−1, x] > 0], {},Reals]

Out[4]= True

The summary of the computations carried out so far is this: For m ≤ 7 CAD
shows that Lm(x) > Lm−1(x). For m ≥ 7 and x ≥ 1

2 we have,

Lm(x)− Lm−1(x) = Tm(x)− Tm−1(x)

+

m+1∑
k=7

(ρ(m, k)− 1)c(m− 1, k)xk︸ ︷︷ ︸
≥0

+ c(m+ 2,m+ 2)xm+2︸ ︷︷ ︸
≥0

≥ Tm(x)− Tm−1(x) > 0,

where for the penultimate estimate we use that the shift quotient ρ(m, k) ≥ 1 for
m, k ≥ 7 as shown above. This completes the proof.
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3. A different approach

Using automated guessing it is possible to derive a second order ordinary differ-
ential equation satisfied by y(x) = Lm(x) that (once found) is easy to check. This
procedure is described here and is used to established the inequality in Theorem
1.2 for x ≥ 1. This is not the optimal range, but the techniques employed here are
simpler.

The equation obtained for y(x) = Lm(x) is

x(3x− 2)(4x− 1)y′′(x)−
(
12mx2 − 20mx+ 8m+ 6x2 − 11x+ 8

)
y′(x)

− 6(m+ 2)xy(x) = 0.

The same technique is then used to find (and subsequently prove) the mixed
difference-differential relation

(3.1) d(m,x)Lm+1(x) = c1(m,x)L′m(x) + c0(m,x)Lm(x),

with

d(m,x) = 2(m+ 2)(2m+ 3)(4m+ 5)(4m+ 7)
(
16m2 − 104m+ 425

)
·

· (1− 4x)2(3x− 2)(6x+ 7),

c1(m,x) =
(
16m2 − 104m+ 425

)
x(6x+ 7)

(
16m3

(
81x4 − 165x3 + 107x2 − 25x+ 2

)
+ 24m2

(
270x4 − 548x3 + 368x2 − 87x+ 7

)
+m

(
10656x4 − 21585x3

+15052x2 − 3605x+ 292
)

+ 3
(
1920x4 − 3889x3 + 2824x2 − 686x+ 56

))
,

c0(m,x) = (m+ 2)
(
16m2 − 104m+ 425

)
(6x+ 7)

(
64m3(1− 4x)2(3x− 2)

+ 24m2
(
27x4 + 566x3 − 671x2 + 228x− 24

)
+m

(
1944x4 + 19953x3 − 23920x2 + 8132x− 856

)
+3
(
480x4 + 3249x3 − 3914x2 + 1330x− 140

))
.

Using CAD and these equations it is possible to show that Tm(x) ≥ 0 for m ≥ 3
and x ≥ 1, and that Lm(x) ≥ 0 for m ≤ 7 and x ≥ 1. Since

Lm(x) = Tm(x) +
∑
k≥7

c(m, k)xk

with non-negative coefficients c(m, k), it follows that Lm(x) ≥ 0 for all x ≥ 1. The
coefficients of L′m(x) are all non-negative (the constant coefficient −2 vanishes),
and hence also L′m(x) ≥ 0 for all m, k ≥ 2 and x > 0. The relation (3.1) then yields

Lm+1(x)− Lm(x) =
c1(m,x)

d(m,x)
L′m(x) +

c0(m,x)− d(m,x)

d(m,x)
Lm(x).

A routine use of CAD, shows the rational function coefficients on the right hand
side above are positive for x ≥ 1. This completes the proof.
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