IDENTITIES FOR GENERALIZED EULER POLYNOMIALS

LIN JIU, VICTOR H. MOLL, AND CHRISTOPHE VIGNAT

ABSTRACT. For N € N, let Tnx be the Chebyshev polynomial of the
first kind. Expressions for the sequence of numbers pEN), defined as
the coefficients in the expansion of 1/Tn(1/z), are provided. These
coefficients give formulas for the classical Euler polynomials in terms of
the so-called generalized Euler polynomials. The proofs are based on a
probabilistic interpretation of the generalized Euler polynomials recently

given by Klebanov et al. Asymptotics of pgN) are also provided.

1. INTRODUCTION

The Euler numbers F,,, defined by the generating function

1 = 2"
1.1 = E,—
(L.1) cosh z Z " n!
n=0

and the Euler polynomials F, (z) that generalize them

o n Tz

z 2e

(12) ZOEW)m RS

n—

([2, 9.630,9.651]) are examples of basic special functions. It follows directly
from the definition that E, = 0 for n odd. Morever, the relation F, =
2"E, (%) follows by setting x = % in (1.2), replacing z by 2z and comparing
with (1.1).

Moreover, the identity

2eT% 26(:1:71/2),2
(13) e? + 1 = ez/Q —|—€_Z/2
produces
n n E n— i n n—
(1.4) En(x) :Z <k>2:(x—§) k:Z <k)Ek (%) (x—%) k?

k=0
that gives E,(x) in terms of the Euler numbers (see [2, 9.650]).
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The generalized Fuler polynomials E,(lp ) (z), defined by the generating func-
tion

e n 2) p
(1.5) Z E,(Lp)(x)% = (1 n ez> e, forpeN
n=0 ’

are polynomials extending E,(x), the case p = 1. These appear in Section
24.16 of [5]. The definition leads directly to the expression

n
n
(1.6) EP(z)=>" <k> 2*EP (0),
k=0
where the generalized Euler numbers Eﬁlp )(O) are defined recursively by
n

n 1

(17) PO =3 (1) 08,-100)
k=0
for p > 1 and initial condition E,(ql)(O) = E,(0).
2. A PROBABILISTIC REPRESENTATION OF EULER POLYNOMIALS AND
THEIR, GENERALIZATIONS

This section discusses probabilistic representations of the Euler polynomi-
als and their generalizations. The results involve the expectation operator
E defined by

(2.1) Eg(L) = / o) fi(x) dr.

with f7(z) the probability density of the random variable L and for any
function g such that the integral exists.

Proposition 2.1. Let L be a random variable with hyperbolic secant density
(2.2) fo(z) = sech Tz,  for x € R.

Then the Euler polynomial is given by

(2.3) Ey(z) =E (z+:L - 3)".

Proof. The right hand-side of (2.3) is

o0

E(z+:L—3)" = (z — 5 +1t)" sech wt dt
= <n> (a? — %)n_j zj/ tJsech 7 dt
=\ oo
The identity
o E
(2.4) /oo thsech 7t dt = |2:|
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holds for k£ odd, since both sides vanish and for k even, it appears as entry
3.523.4 in [2]. A proof of this entry may be found in [1]. Then, using
|Eopn| = (—1)"Eay, (entry 9.633 in [2])

(2.5) E(z 4L — )" = Z (n) (x— %)"‘7& = E,(x).

§=0
O
(»)

There is a natural extension to the case of Ey " (x). The proof is similar
to the previous case, so it is omitted.

Theorem 2.2. Let p € N and L;j, 1 < j < p a collection of independent

identically distributed random variables with hyperbolic secant distribution.
Then

n

(2.6) EP)(z)=E |z + Ep: (1L; — 1)

In a recent paper, L. B. Klebanov et al. [3] considered random sums of
independent random variables of the form

1 HUN
(2.7) ~ > L
j=1

where the random number of summands py is independent of the Lj’s and
is described below.

Definition 2.3. Let N € N and Tn(z) be the Chebyshev polynomial of
the first kind. The random variable puy taking values in N, is defined by its
generating function

b
TN(l/Z).

Information about the Chebyshev polynomials appears in [2] and [5].

(2.8) EziN =

Example 2.4. Take N = 2. Then Ty(z) = 22% — 1 gives

2 o0
(2.9) Eob2— — 1+ - % =3
To(1/2) 2—22 pt 2t

20

Therefore po takes the value 2¢, with £ € N, with probability
(2.10) Pr(puy = 20) = 27°.

In [3], Klebanov et al. prove the following result.
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Theorem 2.5 (Klebanov et al.). Assume {L;} is a sequence of independent
identically distributed random variables with hyperbolic secant distribution.
Then, for all N > 2 and py defined in (2.8), the random variable

1 HUN
(2.11) L:= NZLj
j=1

has the same hyperbolic secant distribution.

3. THE EULER POLYNOMIALS IN TERMS OF THE GENERALIZED ONES

The identifies (1.6) and (1.7) can be used to express the generalized Eu-

ler polynomial g (z) in terms of the standard Euler polynomials E,(z).
However, to the best of our knowledge, there is no formula that allows to

express E,(z) in terms of E,(Lp ) (x). This section presents such a formula.

Definition 3.1. Let N € N. The sequence {péN) :£=0,1,---}is defined
as the coeflicients in the expansion

o

1/2 Z

(3.1)

Definition 2.3 shows that
(3.2) N =Pr(uy =0), forLeN.
(N)

The numbers p,’ will be referred as the probability numbers.

Example 3.2. For N = 2, Example 2.4 gives

@) if £ is odd
3.3 _
(3:3) Pe {2 2 if ¢ is even, £ # 0.

(N)

The coefficients p;, ’ are now used to produce expansions of E,(x), one
for each N € N, in terms of the generalized Euler polynomials.
Theorem 3.3. The Euler polynomials satisfy, for all N € N,
1
~E [BY) (bun + Na - )]
Proof. From (2.3) and (2.11)

(3.4) En(x) =

(3.5) By (3) =E(L)" = 1 E 0> Lj|
j=1
with Theorem 2.2, this yields
LN UN "
(3.6) BB (B9)| =E Yo L| =N"Ea(3).
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Using identity (1.4), it follows that
En(z) =
n

Lk=0
= E <k>N_k(zL1+~-+zL#N)k (z ;)n_k]
Lk=0
1 " n n—k
= B\ (k>(ZL1 oLy )P (N = 3)) ]
L k=0
- .
= E|<7 (Lot ol + Nz - 3)) }
- 1 i
= B | (Lt i o )]
-
- = (uN)
B (B,
where z = %MN + N (a: - %) This completes the proof. O

The next result is established using the fact that the expectation operator
E satisfies

(3.7) Elh(un)) = > p " k),
k=0

for any function h such that the right-hand side exists.
Corollary 3.4. The Fuler polynomials satisfy

I &~ (v
) Pu(@) =~ 3 VB (S N (- 1)
k=N
Note 3.5. Corollary 3.4 gives an infinite family of expressions for F,(z) in

terms of the generalized Euler polynomials Egk)(x), one for each value of
N > 2.

w

Example 3.6. The expansion (3.8) with N = 2 gives

1
—EPO(0+ 22 —1).

Nk

(3.9) En(z) = zin

~
Il

1
For instance, when n = 1,
Jay

EPO (0422 - 1)
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and the value E%e)(:c) =z — & gives

11
(3.11) Ei(x 72?€+2x—1—€) x—3
=1

[\

as expected.

4. THE PROBABILITY NUMBERS

For fixed N € N, the random variable i has been defined by its moment
generating function

(4.1) EzHN = 1/z Zp 2.

This section presents properties of the probability numbers péN) that appear
in Corollary 3.4.

For small N, the coefficients pgN) can be computed directly by expanding

the rational function 1/7x(1/z) in partial fractions. Example 2.4 gave the
case N = 2. The cases N = 3 and N = 4 are presented below.

Example 4.1. For N = 3, the Chebyshev polynomial is
(4.2) T3(z) = 42° — 32 = 42(2 — a) (2 + a),
with o = 1/3/2. This yields

1 23 — 3" 2k+3
4.3 = — 2 '
(43) T5(1/z) 41 —az)(1+ az) ;2%“2
It follows that pé3) =0 unless ¢ = 2k + 3 and
k

3 _ 3
(4.4) Pak+3 = 5ok72-
Corollary 3.4 now gives

1o~ 3% ok

(4.5) En() = o > sorra B (B + k),

k=0

a companion to (3.9).

Example 4.2. The probability numbers for N = 4 are computed from the
expression

1 B 2
Ty(1/2) 24 —822+8’

(4.6)

The factorization

(4.7) A 824 8=(2-pB)(2—7)



IDENTITIES FOR GENERALIZED EULER POLYNOMIALS 7

with 8 = 2(24+v/2) and v = 2(2—+/2) and the partial fraction decomposition

24 B8 1 7 1
—82248 [B-1-§/22 B-y1-n/22

show that p§4) =0 for £ odd or £ =2 and

(4.9 W = e [0+ VD - 2 - va]

220+1

(4.8)

for £ > 2. Corollary 3.4 now gives

fZ @4V~ @2 VB

(4.10)  By(z 2

EC)(4x 4 € - 2).

Some elementary properties of the probability numbers are presented
next.

Proposition 4.3. The probability numbers pgN) vanish if £ < N.

Proof. The Chebyshev polynomial T (z) has the form 2V =12V + lower order
terms. Then the expansion of 1/7x(1/z) has a zero of order N at z = 0.

This proves the statement. O
Proposition 4.4. The probability numbers péN) vanish if £ Z N mod 2.

Proof. The polynomial T (z) has the same parity as N. The same holds
for the rational function 1/Tn(1/z). O

An expression for the probability numbers is given next.

Theorem 4.5. Let N € N be fized and define

(V) _ (2k=Dm
4.11 =
Then

N
(4.12) péN) N Z(— )+l gin G(N) cost ™1 HéN).

k=

Proof. The Chebyshev polynomial is defined by T (cos ) = cos(IN), so its
roots are z,(CN) = cos HI(CN), with HI(CN) as above. The leading coefficient of

Twn(z) is 2V~1, thus
1 21—N
Tn(z) B Hévzl (z — Zk)
In the remainder of the proof, the superscript N has been dropped from

z,(gN) and HI(CN), for clarity. Define

(4.13)

N
(4.14) H zZ— 2k).
k=1
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The roots z, of () are distinct, therefore

1 s 11
4.15 = .
(413) eI DY en
The identity Ty (z) = NUn_1(2) gives
(4.16) Q,(Zk) = NQI_NUNfl(Zk)
where Uj(z) is the Chebyshev polynomial of the second kind defined by
_ sin(N +1)0

Then

sin N6,
4.1 _ =Un_ = .
(4.18) Un—-1(zk) = Un—1(cosb) 6,

and the value sin N§; = (—1)**! yields

(4.19) Q') = CL oo
. ) = ———— .
k sin 0,
Therefore (4.15) now gives
(420 1 281 L (—1)ktsing,
' Q(z) N £~ z—cosby '
It follows that
R Lo XN:( e zsin 0y,
Tn(1/z)  Q(1/2) N P 1 — zcos Oy,
1 N 00
=~ z:(—l)kJF:l sin 0, Z 21 cost 0,
k=1 =0
1 o) N
= ¥ Z 21 Z:(—l)kJrl sin 6, cos’ 0.
=0 k=1
The proof is complete. O

The next result provides another explicit formula for the probability num-
bers. The coefficients A(n, k) appear in OEIS entry A008315, as entries of
the Catalan triangle.

Theorem 4.6. Let A(n, k) = (Z) - (kﬁl) Then, if N = £ mod 2,

(%-1)
p =5 Y (DML 2+ D)),
(3t-1)]
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indent when £ is not an odd multiple of N and

) 1 [£/N-1] (_1)k
p = > (-D)FA(—1,5N) | + S with k= 3 (¢/N —1)
s=1
otherwise.

The proof begins with a preliminary result.

Lemma 4.7. Let N e N and 0, = % (2]3\, D Then

2
N
(421) Z k+1619kz

k=1
s given by
1— (_ )Newzz

2 cos (;r]f,)

(4.22) In(z) = if z# (2t + 1)N witht € Z

and
(4.23) fn(z) = (=1)N2 if z= (2t + 1)N for somet € Z.

In particular

(—1)/N=1)/2 N, if £ s an odd integer
424)  falk) =1Ly .

W otherwise.

Proof. The function fy is the sum of a geometric progression. The formula
(4.23) comes from (4.22) by passing to the limit. O

The proof of Theorem 4.6 is given now.

Proof. The expression for péN) given in Theorem 4.5 yields

(N) i N (_1)k+1 (ezek _67191@) e +6719k -1
" - Nk:1 21 2
N -1
1 k+1 =1\ T y0—om0 oo
= g 2D < r >{€( e — el m}
k=1 r=0
-1
1 (-1
= %N, > ( , ) vl —2r) = fn(l —2r —2)]
r=0
= 24]\71 ZA (—=1,r)fn(l—2r)+ fn(£) — fN(—E)] )

Now fn({) = fn(—£¢) =0 if £/N is not an odd integer. On the other hand,
if { =(2t+ 1)N, with t € Z, then

(4.25) fn(0) = (=1)!N2 and fy(—€) = —(—1)"'Nu.
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Thus
Fn(0) — fa(—0) {21\71(—1)(‘5/1“1)/2 if £ is an odd multiple of N
N - N{— ey

0 otherwise.

The simplification of the previous expression for pgN) is divided in two
cases, according to whether ¢ is an odd multiple of N or not.
Case 1. Assume £ is not an odd multiple of N. Then

-1

vy _ 1 _ _
(4.26) p) ) = 26%;/1(@ 1) fn(0—2r).
Morever,

1)t if =2r _ 1
(427) fN(g_QT) — {( )NZ I = ‘ 2t +
otherwise.

Therefore

o 1 A
(4.28) M = 5 S (=ntAre-1,n).

t—é(2N2 1)

{—2r=(2t+1)N

Observe that ¢ — (2t + 1) N is always an even integer, thus the index r may
be eliminated from the previous expression to obtain

-

He!

(4.29) piN = 5 > (DA - LA (2t + 1)N)).
SHES)

Case 2. Assume / is an odd multiple of N, say ¢ = (2k + 1)N. Then

PN = 24Nz Z r) (0 —2r) 4 2Ni(—1)*
= ZA P fn(l = 2r) +(_1)k
a 24Nz i N 20-1"

The term fy(¢—2r) vanishes unless £ —2r is an odd multiple of N. Given
that £ = (2k 4+ 1) N, the term is non-zero provided 2r is an even multiple of
N;say r = sN for s € N. The range of sis 1 <5 < %:214:—#1—%. This
implies 1 < s <2k =/¢/N — 1, and it follows that

s=1

The proof is complete. O
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Note 4.8. The expression in Theorem 4.6 shows that pgN) is a rational
number with a denominator a power of 2 of exponent at most . Arithmetic
properties of these coefficients will be described in a future publication [4].
Moreover, the probability numbers péN) appear in the description of a ran-
dom walk on N sites. Details will appear in [4].

5. AN ASYMPTOTIC EXPANSION

The final result deals with the asymptotic behavior of the probability
(N)

numbers p,

Theorem 5.1. Let pn(z) = E[z#N]. Then, for fized z in the unit disk
|2l <1,

z
14+ v1—22

Proof. The generating function satisfies

(5.1) on(2) ~ ( )N, as N — oo.

(5.2) on(z) =1/Tn(1/2) =

N -1
H (1—zc089 ))

with 0( ) = = (2k — 1)m/2N as before. Then

N
(5.3) logpn(z) = log2 + Nlog% - Zlog (1 — ZCos GI(CN)> .
k=1

The last sum is approximated by a Riemann integral

N
1 _ (V) 1/” B B 14+ V1= 22
N kzl log (1 zcos b ) A log(1—zcos ) df = log 5 .

The last evaluation is elementary. It appears as entry 4.224.9 in [2]. It

follows that
(5.4) log on(2) ~ log2 + N log (g) — Nlog

<1+m>
2

indent and this is equivalent to the result. (I

The function

(5.5) Az) = Hm Zcz

is the generating function for the Catalan numbers

(5.6) C,p = ni : <2:>
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The final result follows directly from the expansion of Binet’s formula for
Chebyshev polynomial

(5.7) I e

Some standard notation is recalled. Given two sequences a = {a,}, b =
{bn}, their convolution ¢ = a x b is the sequence ¢ = {¢,}, with

(58) Cpn = Zajbn,j.
7=0

The convolution power ¢*N) is the convolution of ¢ with itself, N times.

Theorem 5.2. For N € N fized, the first N nonzero terms of the sequence
qéN) = 24_1p§N) agree with the first N terms of the N-th convolution power

C7(1*N) of the Catalan sequence:

P = G G2 = O, i = O ), = O
In terms of generating functions, this is equivalent to

o0 N [ee]
(5.9) Z Cpz?mt ] — Z qéN)zZ ~ 2N 3N

n=0 /=0
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