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Abstract. Properties of the integral of powers of log Γ(x) from 0 to 1 are con-
sidered. Analytic evaluations for the first two powers are presented. Empirical
evidence for the cubic case is discussed.

1. Introduction

The evaluation of definite integrals is a subject full of interconnections of many
parts of Mathematics. Since the beginning of Integral Calculus, scientists have
developed a large variety of techniques to produce magnificent formulae. A partic-
ularly beautiful formula due to J. L. Raabe [12] is

(1.1)

∫ 1

0

log

(

Γ(x + t)√
2π

)

dx = t log t − t, for t ≥ 0,

which includes the special case

(1.2) L1 :=

∫ 1

0

log Γ(x) dx = log
√

2π.

Here Γ(x) is the gamma function defined by the integral representation

(1.3) Γ(x) =

∫ ∞

0

ux−1e−udu,

for Re x > 0. Raabe’s formula can be obtained from the Hurwitz zeta function

(1.4) ζ(s, q) =
∞
∑

n=0

1

(n + q)s

via the integral formula

(1.5)

∫ 1

0

ζ(s, q + t) dq =
t1−s

s − 1

coupled with Lerch’s formula

(1.6)
∂

∂s
ζ(s, q)

∣

∣

∣

s=0
= log

(

Γ(q)√
2π

)

.

An interesting extension of these formulas to the p-adic Gamma function has re-
cently appeared in [3].
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Two of the current authors have investigated definite integrals involving the
Hurwitz zeta function [6, 7]. As an unexpected corollary, the formula for the integral
of log2 Γ(x) is

(1.7) L2 :=

∫ 1

0

log2 Γ(x) dx =
γ2

12
+

π2

48
+

1

3
γL1 +

4

3
L2

1 − (γ + 2L1)
ζ′(2)

π2
+

ζ′′(2)

2π2

was produced. Here γ is Euler’s constant defined by

(1.8) γ = lim
n→∞

n
∑

k=1

1

k
− log n.

The natural question addressed here is that of an analytic expression for the
family of integrals

(1.9) Ln :=

∫ 1

0

logn Γ(x) dx, for n ∈ N.

that extends the values of L1 and L2 given above. Section 2 presents a direct
approach to the evaluation of L1, very close in spirit to the original proof given
by Raabe. The proof employs only elementary properties of the gamma function.
Section 3 contains a new proof of the value of L2 based on the Fourier series
expansion of log Γ(x). An expression for L3 remains an open question. The quest
for such an expression is connected to a special kind of multiple zeta values known
as Tornheim sums. The study of their relation with the value of L3 has begun in
[8, 9].

Section 4 discusses the integrals

(1.10) Sn = (−1)n

∫ 1

0

logn(sin πx)dx

that appear in the evaluation of L2. A notion of weight is introduced and a recur-
rence for this family shows directly that Sn is a homogeneous form. The study of
the loggamma integrals considered here has been motivated by our conjecture that
Ln is a homogeneous form of weight n. This remains open for n ≥ 3.

2. A Riemann sum approach to the evaluation of L1

In this section we present an elementary evaluation of the formula for L1. This
was originally obtained by E. Raabe [12] and it appears as entry 6.441.2 in the
classical table [10].

Theorem 2.1. The integral L1 is given by

(2.1)

∫ 1

0

log Γ(x) dx = log
√

2π.

Proof. Partition the interval [0,1] into n subintervals of length 1/n to produce

∫ 1

0

log Γ(x) dx = lim
n→∞

n
∑

k=1

1

n
log Γ

(

k

n

)

.(2.2)
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On the other hand, assuming n is even,

1

n

n
∑

k=1

log Γ

(

k

n

)

=
1

n
log

(

n
∏

k=1

Γ

(

k

n

)

)

=
1

n
log





n/2
∏

k=1

Γ

(

k

n

)

Γ

(

1 − k

n

)





=
1

n
log





n/2
∏

k=1

π

sin(πk/n)





= log
√

π − log





n/2
∏

k=1

sin(πk/n)





1/n

.

The reflection formula Γ(x)Γ(1 − x) = π/ sin πx for the gamma function has been
employed in the third line.

The classical trigonometric identity

n−1
∏

k=1

sin

(

πk

n

)

=
n

2n−1

now yields

1

n

n
∑

k=1

log Γ

(

k

n

)

= log

( √
2π

(2n)1/2n

)

.

Let n → ∞ to obtain the result. The case n odd is treated similarly. �

3. The evaluation of L2

The expression for L2 given in (1.7) was obtained in [6] using integrals involving
the Hurwitz zeta function ζ(z, s), defined in (1.4). Differentiate the identity

(3.1)

∫ 1

0

ζ(z′, x)ζ(z, x) dx =
2Γ(1 − z) Γ(1 − z′)

(2π)2−z−z′ ζ(2 − z − z′) cos

(

π(z − z′)

2

)

,

with respect to z and z′ and then set z = z′ = 0. The formula of Lerch (see [13],
page 271)

(3.2)
d

dz
ζ(z, x)

∣

∣

∣

z=0
= log Γ(x) − log

√
2π,

produces the result.
In this section we provide a new proof of (1.7) based on the Fourier expansion

of log Γ(x) :

log Γ(x) = L1 −
1

2
log(2 sinπx) +

1

2
(γ + 2L1)(1 − 2x) +(3.3)

+
1

π

∞
∑

k=1

log k

k
sin 2πkx.

This expansion was given by E. Kummer [11]; the reader will find a detailed proof
in [1].
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Define

g(x) = L1 −
1

2
log(2 sin πx) +

1

2
(γ + 2L1)(1 − 2x),(3.4)

s(x) =
1

π

∞
∑

k=1

log k

k
sin 2πkx,

so that

(3.5) L2 =

∫ 1

0

s2(x) dx + 2

∫ 1

0

s(x)g(x) dx +

∫ 1

0

g2(x) dx.

Each term in this sum is now considered separately.

First term. The orthogonality of the trigonometric terms on [0, 1] yields
∫ 1

0

s2(x) dx =
1

π2

∑

k1,k2

log k1

k1

log k2

k2

∫ 1

0

sin(2πk1x) sin(2πk2x) dx =
1

π2

∑

k

log2 k

k2
.

Therefore

∫ 1

0

s2(x) dx = ζ′′(2)/2π2 using

∞
∑

k=1

log2 k

k2
= ζ′′(2).

Second term. The “cross term” in (3.5) reduces to

2

∫ 1

0

g(x) s(x) dx = − 1

π

∞
∑

k=1

log k

k

∫ 1

0

sin(2πkx) log(2 sinπx) dx

− 2(γ + 2L1)

π

∞
∑

k=1

log k

k

∫ 1

0

x sin(2πkx) dx

in view of the vanishing of

∫ 1

0

sin(2πkx) dx = 0, for k ≥ 1. Integration by parts

yields

∫ 1

0

x sin(2πkx) dx = − 1

2πk
, converting the last series into

∞
∑

k=1

log k

k2
= −ζ′(2).

The evaluation

∫ 1

0

sin(2πkx) log(2 sinπx) dx = 0 appears as 4.384.1 in [10]. It

follows that

∫ 1

0

g(x)s(x) dx = −ζ′(2)

2π2
(γ + log 2π).

Third term. The last term in (3.5) is

∫ 1

0

g2(x) dx = L2
1 +

π2

48
+

1

12
(γ + 2L1)

2,

where we have employed

(3.6)

∫ 1

0

log(2 sin πx) dx =

∫ 1

0

(1 − 2x) log(2 sinπx) dx = 0

and

(3.7)

∫ 1

0

log2(2 sinπx) dx =
π2

12
.

The second integral in (3.6) is seen to vanish by using the change of variables
t = 1−x. The evaluation (3.7) is proven in Section 4. Every term in (3.5) has been
evaluated, confirming (1.7).
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Note 3.1. A second proof of (1.7) can be obtained from the Fourier expansion

(3.8) log Γ(x) = a0 +

∞
∑

n=1

an cos(2πnx) +

∞
∑

n=1

bn sin(2πnx),

with a0 = L1, an = 1
2n and bn = A+log n

πn , with A = γ + 2L1. This appears in [6]
(formulas (6.3) and (6.4)) and it follows directly form entries 6.443.1 and 6.443.3
in [10]. Parseval’s identity gives

(3.9) L2 = a2
0 +

1

2

∞
∑

n=1

a2
n +

1

2

∞
∑

n=1

b2
n,

which produces (1.7).

4. A family of log-trigonometric integrals

This section considers the family of integrals

(4.1) Sk = (−1)k

∫ 1

0

logk(sin πx)dx

that appeared in the special cases k = 1 and k = 2 in the evaluation of L2 given in
Section 3. These integrals were analyzed in [2], where the value

(4.2) Sk =
(−1)k

√
π2k

(

d

dα

)k Γ(α + 1
2 )

Γ(α + 1)

∣

∣

∣

α=0

was employed to produce the exponential generating function

(4.3)

∞
∑

k=0

Sk
xk

k!
=

1√
π

Γ
(

1−x
2

)

Γ
(

1 − x
2

) .

From there, the author derived the recurrence

(4.4) Sk+1 = Sk log 2 +

k
∑

j=1

(1 − 2−j)ζ(j + 1)
k!

(k − j)!
Sk−j .

Note 4.1. The initial condition for (4.4) is S1 = log 2. This result, due to Euler,

appeared in detail in [5], page 182. The value S2 = π2/12 + log2 2 is now obtained
from the recurrence. These two integrals appear in [10] as 4.241.7 and 4.261.9
respectively. The next two values are

(4.5) S3 =
1

4
π2 log 2 + log3 2 +

3

2
ζ(3)

and

(4.6) S4 =
19π4

240
+

1

2
π2 log2 2 + log4 2 + 6 log 2 ζ(3).

These values do not appear in [10].

Note 4.2. Certain families of integrals can be transformed into homogeneous poly-
nomials by replacing the real numbers appearing in their evaluation by variables.
Each number x is provided a weight w(x) and at the moment this assignation is
completely empirical. For example, introduce the variables

(4.7) z0 = log 2, and z1 = π,
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and

(4.8) zj = ζ(j)1/j .

Therefore, the number ζ(j) = zj
j has weight w(ζ(j)) = j. The weight satisfies

w(ab) = w(a)+w(b). Therefore the weights to π and ζ(j) described above produce
the consistent assignment of weight 2m to both sides of the equation

(4.9) ζ(2m) =
22m−1|B2m|

(2m)!
π2m.

Rational numbers have weight 0.
The integrals Sk are now expressed as

S1 = z0(4.10)

S2 = z2
0 + 1

12z2
1

S3 = 1
4z0z

2
1 + z3

0 + 3
2z3

3

S4 = 19
240z4

1 + 1
2z2

0z2
1 + z4

0 + 6z0z
3
3 .

The recurrence (4.4) gives a direct proof of the next result.

Theorem 4.3. The integral Sk gives a homogeneous polynomial of degree k.

The integrals Sn appear in many interesting situations. For instance, let

(4.11) Ω(z) =
4Γ(z)

z Γ2(z/2)
=

∞
∏

j=1

(1 + z
2j )2

(1 + z
j )

.

Consider the coefficients {cn} in the Taylor series representation:

(4.12) Ω(z) =

∞
∑

j=0

cj
zj

j!
.

It has been observed that, the expression for Sn, is given by

(4.13) Sn = Hn(log 2)

where

(4.14) Hn(z) =

n
∑

k=0

(−1)k

(

n

k

)

ckzn−k.

5. A related family of integrals

In this section we consider expressions for the integrals

(5.1) Tn,j =

∫ 1

0

[log Γ(x)]
j

[log Γ(1 − x)]
n−j

dx,

for n ∈ N and 0 ≤ j ≤ n. These integrals are intimately connected to the family
{Sk} described in Section 4.

Lemma 5.1. The integrals Tn,j satisfy the symmetry rule

(5.2) Tn,j = Tn,n−j .

Proof. The change of variables x 7→ 1 − x does it. �
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Theorem 5.2. Let n ∈ N. Then

(5.3)

n
∑

j=0

(

n

j

)

Tn,j =

n
∑

k=0

(

n

k

)

(log π)n−kSk.

Proof. Expand the n-th power of the logarithm of the reflection formula for the
gamma function Γ(x)Γ(1 − x) = π/ sinπx. �

Corollary 5.3. The integral L1 has the value log
√

2π.

Proof. The previous theorem yields

(5.4) T1,0 + T1,1 = S0 log π + S1.

Clearly S0 = 1 and S1 = log 2 was given in Note 4.1. Applying symmetry (T1,0 =
T1,1) gives the result. �

Note 5.4. The case n = 2 of Theorem 5.2 yields

(5.5) T2,2 + T2,1 =
1

2

[

S0 log2 π + 2S1 log π + S2

]

,

that is,
∫ 1

0

log2 Γ(x) dx +

∫ 1

0

log Γ(x) log Γ(1 − x) dx =
1

24

(

12 log2(2π) + π2
)

.

Similarly, n = 3 gives
∫ 1

0

log3 Γ(x) dx+3

∫ 1

0

log2 Γ(x) log Γ(1−x) dx =
1

8

(

π2 log(2π) + 4 log3(2π) + 6ζ(3)
)

.

Conjecture 5.5. Assume log 2 and log π are transcendental over Kn = Q(ζ(2), · · · , ζ(n)).
Write Sn as

(5.6) Sn =

n
∑

j=0

αn,j logj 2.

Then the coefficients satisfy

(5.7) αn,i =

(

n

i

)

αn−i,0.

Note 5.6. It has been observed using Mathematica that the sum on the right-
hand side of (5.3) is the integral Sn after replacing log 2 by log 2π. For example,

S2 = π2/12 + log2 2 becomes

π2

12
+ (log 2 + log π)2 =

π2

12
+ log2 2 + 2 log 2 log π + log2 π.

This is the right-hand side of (5.3) for n = 2. At the moment, a proof is lacking.

Note 5.7. The recurrence (4.4) shows that Sn is a polynomial in log 2 written in
the form (5.6). Experimental observations of these coefficients, that lead to the
conjecture stated above, are now recorded.

First: the coefficients αn,j are in the field Kn.
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Second: Note 5.6 and the assumption that log π is transcendental over Kn, yields
a series of relations among the coefficients αn,j . A simple calculation produces

(5.8)

n−i
∑

j=0

αn,i+j

(

i + j

i

)

logj 2 =

(

n

i

) n−i
∑

j=0

αn−i,j logj 2,

for 0 ≤ i ≤ n.
The use of these relations is illustrated in a simple case: take i = n to obtain

αn,n = α0,0. The value α0,0 = 1 now shows that Sn is a monic polynomial in log 2.
Naturally, this follows directly from (4.4).

Third: the further assumption that log 2 is transcendental over Kn produces

(5.9)

(

i + j

i

)

αn,i+j =

(

n

i

)

αn−i,j .

The case i = 0 yields no information, but 0 < i ≤ n and j = 0 produce (5.7).
Therefore every element of a row in the array {αn,k : 0 ≤ k ≤ n, n ≥ 0}, except
the first one, is determined by the first column.

The first few terms are given by α1,0 = 0, α2,0 = 1
2ζ(2), α3,0 = 3

2ζ(3),

α4,0 = 3
4 (ζ2(2) + 7ζ(4), and α5,0 = 15

2 (ζ(2)ζ(3) + 3ζ(5)). It would be of interest to
develop an algorithm to determine a priori the values of αm,0 without the use of
the recurrence (4.4).

5.1. An experimental observation. Denote by Md the set of all monomials in
the variables z1 = π, ζ(3), ζ(5), ζ(7), · · · with weight d. Then

(5.10) αn,n−j =
∑

m∈Md

C(m)(n − d + 1)d m

for some rational coefficients C(m) to be determined. Experiments have detected
some interesting properties, that will be explored in future work. For example,
C
(

zi1
1 ζ(3)i2ζ(5)i3 · · ·

)

= C
(

zi1
1

)

C
(

ζ(3)i2
)

C
(

ζ(5)i3
)

and the base cases can be
computed as follows:

C(z1) = 1, C
(

zk
1

)

=

(k−1)/2
∑

i=1

ζ(2i)
1 − 21−2i

k − 1
C
(

zk−2l
1

)

and C
(

ζ(j)i
)

=
(1 − 21−j)i

ji i!
.

6. Analytic expressions for L3

Attempts to produce a simple form for L3 in terms of known special functions
have produced some elaborate ones. The next two represent the type of expressions
obtained:

Formula 1. The integral L3 is given by

L3 =
3

16
+

(γ + 2L1)
2 + log

√
2(γ + 2L1)

4π2
ζ(3)

+
(γ + log(4π))

8π2
ζ′(3) +

1

16π2
ζ′′(3) +

(γ + 2L1)

2π2

∑

n

∑

k<n

log(k)

nk(n − k)

+
1

2π2

∑

n

∑

k<n

log(k) log(n)

nk(n − k)
− 1

4π2

∑

n

∑

k<n

log(k) log(n)

nk(n + k)
+ 3L1L2 − 2L3

1.
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Formula 2. The second expression for L3 is given in terms of the functions

T±(z, m) =

∞
∑

n=1

G±
m(n)

nz
,

where

G±
m(n) =

n−1
∑

k=1

logm k

(

1

k
∓ 1

n + k

)

.

Define
cγ,π = γ + 2 log

√
2π

then

16π2

∫ 1

0

log3

(

Γ(x)√
2π

)

dx = (4c2
γ,π + 2cγ,π log 2 + 3)ζ(3) + 2(cγ,π + log 2)ζ′(3)

+ζ′′(3) + 8cγ,πT+(2, 1) − 8T ′
+(2, 1) + 4T ′

−(2, 1).

Expanding the integrand on the left produces L3 and other terms containing L1

and L2. The main challenge is in evaluating the double sums, in terms of known
values of special functions.

7. An Experimental Mathematics approach to L3

The weights introduced in Note 4.2 are now extended to include the Euler con-
stant γ defined in (1.8). Therefore γ is the desingularization of the harmonic series
ζ(1). The assignment w(γ) = 1 is consistent with the weights given to ζ(j) for
j ≥ 2. The value w(log π) = 1 is empirical.

The rule that differentiation increases the weight by 1 is motivated by the exam-
ple below. The explicit formulas for L1 and L2 given in (1.2) and (1.7), respectively,
motivated the following conjecture.

Conjecture 7.1. The integral Ln is a homogeneous form of degree n.

This section contains experimental studies conducted in order to decide this
conjecture for n = 3. From the experimental point of view, it is natural to employ
methods for finding integer relations; the celebrated PSLQ algorithm is specifically
designed for this task, but also lattice reduction algorithms like LLL can be used.
Once that we have a rough idea which mathematical constants may appear in the
result, we can build a basis by considering certain combinations (products) of these
constants.

To recover L2, we could start with π, log 2, logπ, γ, ζ′(2), ζ′′(2) and take all prod-
ucts of the form pq where p is a polynomial in π, log 2, log π, γ of degree at most 2,
and q is either 1, ζ′(2), or ζ′′(2). All these products are then homogenized to total
degree 2 using the variable z1 = π. The resulting basis consists of 30 elements and
LLL needs less than a second to find the correct integer relation (a precision of 70
decimal digits was necessary for that).

However, the integral L3 so far resisted this approach. It seems reasonable to
include quantities like ζ′′′(2) and ζ(3) into the basis. By considering all combina-
tions of degree 3 the number of basis elements easily exceeds 100—depending on
the restrictions that are imposed. Although L3 was evaluated to more than 400
digits, no relation could be found. This indicates that either higher precision is
needed, or that another mathematical constant enters the game. Similar attempts
on L4 did not succeed either.
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8. Asymptotics of Ln

High precision numerical evaluation of the integrals Ln suggest that Ln ∼ n! as
n → ∞. The next theorem makes this behavior more precise.

Theorem 8.1. There exist positive constants ci such that

(8.1)
Ln

n!
∼

∞
∑

i=1

(−1)i+1 ci

in

as n → ∞. An explicit formula for ci given below shows that the first few terms
are c1 = 1, c2 = γ, c3 = 1

2ζ(2) + 3
2γ2 and c4 = 1

3

(

8γ3 + γπ2 + ζ(3)
)

.

Proof. The integral Ln is obtained from the expansion

(8.2) log Γ(x) = − log x − γx +

∞
∑

k=2

(−1)k ζ(k)

k
xk,

that appears as entry 8.342.1 in [10]. Define a0 = − log x, a1 = −γ and ak =
(−1)kζ(k)/k. The expansion of

(8.3) (log Γ(x))
n

= (a0 + a1x + a2x
2 + · · · )n =

∞
∑

k=0

bkxk

is organized according to powers of x (treating a0 = − logx as an independent
variable). In the computation of the coefficient bN it suffices to consider the sum
up to xN . The multinomial theorem ([4], page 28) gives

(a0+a1x+· · ·+aNxN )n =
∑

i0, i1 ··· ,iN≥0

i0+i1+···+iN =n

n!

i1! · · · iN !
ai0
0 ai1

1 · · ·aiN

N xi1+2i2+3i3+···+NiN .

Integrating (log Γ(x))n from 0 to 1 and using

(8.4)

∫ 1

0

(− logx)ixj dx =
i!

(j + 1)i+1

yields

Ln = n!

∞
∑

N=0

∑

i0,i1,··· ,iN ≥0

i0+i1+···+iN=n

i1+2i2+···+NiN=N

ai1
1 ai2

2 · · ·aiN

N

i1! · · · iN !

1

(N + 1)a0+1
.

The term N = 0 has coefficient 1 and to isolate the index i0 use, for 1 ≤ j ≤ N ,
the bound jij ≤ N to obtain n − NHN ≤ i0 ≤ n, with HN the N -th harmonic
number. Replacing the values of ai and using the notation λ = n − i0 yields (8.1)
with

cN+1 =

NHN
∑

λ=1

∑

i1,··· ,iN ≥0

i1+···+iN=λ

i1+2i2+···+NiN =N

γi1ζ(2)i2 · · · ζ(N)iN

2i23i3 · · ·N iN i1! · · · iN !

1

(N + 1)λ−1
.

As a final observation, we point out that the sum in λ may be terminated at N in
view of the inequality λ = i1 + · · · + iN ≤ i1 + 2i2 + · · · + NiN = N . �
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