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Abstract. For a polynomial P , we consider the sequence of iterated integrals
of lnP (x). This sequence is expressed in terms of the zeros of P (x). In the
special case of ln(1 + x

2), arithmetic properties of certain coefficients arising

are described. Similar observations are made for ln(1 + x
3).

1. Introduction

The evaluation of integrals, a subject that had an important role in the 19th

century, has been given a new life with the development of symbolic mathematics
software such as Mathematica or Maple. The question of indefinite integrals was
provided with an algorithmic approach beginning with work of J. Liouville [8] dis-
cussed in detail in Chapter IX of Lutzen [9]. A more modern treatment can be
found in Ritt [21], R. H. Risch [19, 20], and M. Bronstein [3].

The absence of a complete algorithmic solution to the problem of evaluation of
definite integrals justifies the validity of tables of integrals such as [1, 4, 18]. These
collections have not been superseded, yet, by the software mentioned above.

The point of view illustrated in this paper is that the quest for evaluation of
definite integrals may take the reader to unexpected parts of mathematics. This
has been described by one of the authors in [14, 15]. The goal here is to consider
the sequence of iterated integrals of a function f0(x), defined by

(1.1) fn(x) =

∫ x

0

fn−1(t) dt if n ≥ 1.

This formula carries the implicit normalization fn(0) = 0 for n ≥ 1.
A classical formula for the iterated integrals is given by

(1.2) fn(x) =
d−n

dx−n
f(x) =

1

(n− 1)!

∫ x

0

f0(t) (x− t)n−1 dt.

Expanding the kernel (x− t)n−1 gives fn in terms of the moments

(1.3) Mj(x) =

∫ x

0

tjf0(t) dt

as

(1.4) fn(x) =

n−1
∑

j=0

(−1)j
xn−1−j

j! (n− 1− j)!
Mj(x).
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The work presented here deals with the sequence starting at f0(x) = ln(1+xN ).
The main observation is that the closed-form expression of the iterated integrals
contains a pure polynomial term and a linear combination of transcendental func-
tions with polynomial coefficients. Some arithmetical properties of the pure poly-
nomial term are described.

2. The iterated integral of ln(1 + x)

The iterated integral of f0(x) = ln(1 + x) was described in [13]. This sequence
has the form

(2.1) fn(x) = An,1(x) +Bn,1(x) ln(1 + x)

where

An,1(x) = − 1

n!

n
∑

k=1

(

n

k

)

(Hn −Hn−k)x
k = − 1

n!

n
∑

k=1

xk(x+ 1)n−k

k
,(2.2)

Bn,1(x) =
1

n!
(1 + x)n,

where Hn = 1 + 1
2 + · · ·+ 1

n is the nth harmonic number.
The expression for Bn,1(x) is easily guessed from the symbolic computation of

the first few values. The corresponding closed form for An,1(x) was more difficult to
find experimentally. Its study began with the analysis of its denominators, denoted
here by αn,1. The fact that the ratio

(2.3) βn,1 :=
αn,1

nαn−1,1

satisfies

(2.4) βn,1 =

{

p if n is a power of the prime p

1 otherwise

was the critical observation in obtaining the closed form An,1(x) given in (2.2). We

recognize βn,1 as eΛ(n), where

(2.5) Λ(n) =

{

ln p if n is a power of the prime p

0 otherwise

is the von Mangoldt function. This yields

αn,1 = n!

n
∏

j=2

βj,1 = n!

n
∏

j=2

eΛ(j),

and the relation

(2.6) eΛ(n) =
lcm(1, . . . , n)

lcm(1, . . . , n− 1)

shows that

(2.7) αn,1 = n! lcm(1, . . . , n).

Note 2.1. The harmonic number Hn appearing in (2.2) has challenging arithmeti-
cal properties. Written in reduced form as

(2.8) Hn =
Nn

Dn
,
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Figure 1. Logarithmic plot of the ratio Ln/Dn.

the denominator Dn divides the least common multiple Ln := lcm(1, 2, . . . , n). The
complexity of the ratio Ln/Dn can be seen in Figure 1. It has been conjectured [5,
page 304] that Dn = Ln for infinitely many values of n.

The expressions for An,1(x) and Bn,1(x) can also be derived from (1.4). Letting
f0(x) = ln(1 + x) yields

(2.9) fn(x) =

n−1
∑

j=0

(−1)j
xn−1−j

j!(n− 1− j)!

∫ x

0

tj ln(1 + t) dt.

Integration by parts gives

(2.10)

∫ x

0

tj ln(1 + t) dt =
xj+1 ln(1 + x)

j + 1
− 1

j + 1

∫ x

0

tj+1 dt

1 + t
.

Replacing in (2.9) shows that the contribution of the first term reduces simply to
xn ln(1 + x). Therefore

(2.11) fn(x) =
1

n!
xn ln(1 + x) +

1

n!

n
∑

j=1

(−1)j
(

n

j

)

xn−j

∫ x

0

tj dt

1 + t
.

It remains to provide a closed form for the integrals

(2.12) Ij :=

∫ x

0

tj

1 + t
dt.

These can be produced by elementary methods by writing

(2.13)
tj

1 + t
=

tj − (−1)j

1 + t
+

(−1)j

1 + t
.
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Replacing in (2.11) gives

fn(x) =
1

n!
xn ln(1 + x)

+
1

n!

n
∑

j=1

(−1)j
(

n

j

)

xn−j

∫ x

0

tj − (−1)j

t+ 1
dt

+
1

n!

n
∑

j=1

(

n

j

)

xn−j

∫ x

0

dt

1 + t
.

The first and last line add up to (x+1)n ln(1+ x)/n!, which yields the closed-form
expression for Bn,1(x). Expanding the quotient in the second line produces

(2.14)
1

n!

n
∑

j=1

(−1)j
(

n

j

)

xn−j

j−1
∑

r=0

(−1)r

j − r
xj−r =

1

n!

n−1
∑

j=0

(

n

j

)

xj

n−j
∑

r=1

(−1)r

r
xr.

The double sum can be written as

(2.15)
1

n!

n
∑

j=0

n−j
∑

r=1

(

n

j

)

(−1)r

r
xj+r =

1

n!

n
∑

a=1

[

a
∑

r=1

(

n

a− r

)

(−1)r

r

]

xa.

The expression for An,1(x) now follows from the identity

(2.16)

a
∑

r=1

(

n

a− r

)

(−1)r

r
= −

(

n

a

)

[Hn −Hn−a] .

An equivalent form, with m = n− a, is given by

(2.17) U(a) :=

a
∑

r=1

(−1)r−1
(

a
r

)

r
(

m+r
r

) = Hm+a −Hm.

To establish this identity, we employ the WZ method [16]. Define the pair of
functions

(2.18) F (r, a) =
(−1)r−1

(

a
r

)

r
(

m+r
r

) and G(r, a) =
(−1)r

(

a
r−1

)

(m+ a+ 1)
(

m+r−1
r−1

) .

It can be easily checked that

(2.19) F (r, a+ 1)− F (r, a) = G(r + 1, a)−G(r, a).

Summing both sides of this equation over r, from 1 to a+ 1, leads to

(2.20) U(a+ 1)− U(a) =
1

m+ a+ 1
.

Now sum this identity over a, from 1 to k − 1, to obtain

(2.21) U(k)− U(1) =

k−1
∑

a=1

1

m+ a+ 1
=

m+k
∑

a=m+2

1

r
= Hm+k −Hm+1.

Combining this with the initial condition U(1) = 1
m+1 gives the result.
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3. The method of roots

The iterated integrals of the function f0(x) = lnP (x) for a general polynomial

(3.1) P (x) =

m
∏

j=1

(x+ zj)

are now expressed in terms of the roots zj using an explicit expression for the
iterated integrals of f0(x) = ln(x+ a).

Theorem 3.1. The iterated integral of f0(x) = ln(x+ a) is given by

(3.2) fn(x) = − 1

n!

n
∑

k=1

xk(x+ a)n−k

k
− (x+ a)n − xn

n!
ln a+

(x+ a)n

n!
ln(x+ a).

Proof. A symbolic calculation of the first few values suggests the ansatz fn(x) =
Sn(x) + Tn(x) ln(x+ a) for some polynomials Sn, Tn. The relation f ′

n = fn−1 and
the form of Sn, Tn given in (3.2) give the result by induction. �

The special case P (x) = 1 + xN the previous result can be made more explicit.

Theorem 3.2. Let a = u+ iv be a root of 1 + xN = 0. Then the contribution of
a and ā = u− iv to the iterated integral of ln(1 + xN ) is given by

− 1

n!

n
∑

k=1

xk

k

[

(x+ a)n−k + (x+ ā)n−k
]

+
1

in!
[(x+ a)n − (x+ ā)n] arctan

(

vx

1 + ux

)

+
(x+ a)n + (x+ ā)n

2n!
ln[(1 + ux)2 + v2x2].

Proof. First observe that ln(x+ a)− ln a = ln(āx+ 1); hence for f0(x) = ln(x+ a)
Theorem 3.1 takes the form

(3.3) fn(x) = − 1

n!

n
∑

k=1

xk(x+ a)n−k

k
+

xn

n!
ln a+

(x+ a)n

n!
ln(āx+ 1).

Since

ln(ax+ 1) = ln |ax+ 1|+ iArg(ax+ 1),

ln(āx+ 1) = ln |ax+ 1| − iArg(ax+ 1),

and ln a + ln ā = 2 ln |a| = 0, it follows that the total contribution of a and ā is
given by

− 1

n!

n
∑

k=1

xk

k

[

(x+ a)n−k + (x+ ā)n−k
]

+
[(x+ a)n ln(āx+ 1) + (x+ ā)n ln(ax+ 1)]

n!

= − 1

n!

n
∑

k=1

xk

k

[

(x+ a)n−k + (x+ ā)n−k
]

+
[(x+ a)n + (x+ ā)n]

n!
ln |ax+ 1|

− i [(x+ a)n − (x+ ā)n]

n!
Arg(ax+ 1).

The stated result comes from expressing the logarithmic terms in their real and
imaginary parts. �
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Corollary 3.3. Let n ∈ N. Then

n
∑

k=1

1

k

∫ x

0

tk(t+a)n−k dt =
1

n+ 1

n
∑

k=1

xk(x+ a)n+1−k

k
+

[

xn+1 − (x+ a)n+1 + an+1
]

(n+ 1)2
.

Proof. Integrate both sides of the identity in Theorem 3.1 and use the relation
f ′
n−1 = fn to obtain the result inductively. �

Note 3.4. The identity in Corollary 3.3 can be expressed in terms of the function

(3.4) Φn(x, a) :=

n
∑

k=1

1

k
xk(x+ a)n−k

in the form

(3.5)

∫ x

0

Φn(t, a) dt =
x+ a

n+ 1
Φn(x, a) +

1

(n+ 1)2
[

xn+1 + an+1 − (x+ a)n+1
]

.

The function Φn(x, a) admits the hypergeometric representation

Φn(x, a) = − xn+1

(n+ 1)(x+ a)
2F1

(

1, 1 + n
2 + n

;
x

x+ a

)

− (x+ a)n ln

(

a

x+ a

)

.

With this representation, the identity in Corollary 3.3 now becomes

∫ x

0

(

t

1− t

)n+1

2F1

(

1, 1 + n
2 + n

; t

)

dt

1− t
=

1

n+ 1

(

x

1− x

)n+1 [

2F1

(

1, 1 + n
2 + n

;x

)

− 1

]

.

4. The iterated integral of ln(1 + x2)

In this section we consider the iterated integral of f0(x) = ln(1 + x2) defined by

(4.1) fn(x) =

∫ x

0

fn−1(t) dt.

The first few examples, given by

f1(x) = −2x+ 2arctanx+ x ln(1 + x2)

f2(x) = − 3
2x

2 + 2x arctanx+ 1
2 (x

2 − 1) ln(1 + x2)

f3(x) = − 11
18x

3 + 1
3x+ (x2 − 1

3 ) arctanx+
(

1
6x

3 − 1
2x
)

ln(1 + x2),

suggest the form

(4.2) fn(x) = An,2(x) +Bn,2(x) arctanx+ Cn,2(x) ln(1 + x2)

for some polynomials An,2, Bn,2, Cn,2. Theorem 3.2 can be employed to obtain a
closed form for these polynomials. It follows that fn(x) satisfies

(4.3) n!fn(x) = −
n
∑

k=1

xk

k

[

(x+ i)n−k + (x− i)n−k
]

− i [(x+ i)n − (x− i)n] arctanx+
1

2
[(x+ i)n + (x− i)n] ln(1 + x2).

The expressions for An,2, Bn,2, Cn,2 may be read from here.
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4.1. Recurrences. The polynomials An,2, Bn,2, Cn,2 can also be found as solutions
to certain recurrences. Differentiation of (4.1) yields f ′

n(x) = fn−1(x). It is easy to
check that this relation, with the initial conditions fn(0) = 0 and f0(x) = ln(1+x2),
is equivalent to (4.1). Replacing the ansatz (4.2) produces

A′
n,2(x) +B′

n,2(x) arctanx+
Bn,2(x)

1 + x2
+ C ′

n,2(x) ln(1 + x2) + Cn,2(x)
2x

1 + x2

= An−1,2(x) +Bn−1,2(x) arctanx+ Cn−1,2(x) ln(1 + x2).

A natural linear independence assumption yields the system of recurrences

B′
n,2(x) = Bn−1,2(x)(4.4)

B0,2(x) = 0

C ′
n,2(x) = Cn−1,2(x)(4.5)

C0,2(x) = 1

A′
n,2(x) = An−1,2(x) +

Bn,2(x) + 2xCn,2(x)

1 + x2
(4.6)

A0,2(x) = 0.

Note 4.1. The definition (4.1) determines completely the function fn(x). In par-
ticular, given the form (4.2), the polynomials An,2, Bn,2 and Cn,2 are uniquely
specified. Observe however that the recurrence (4.4) does not determine Bn,2(x)
uniquely. At each step, there is a constant of integration to be determined. In order
to address this ambiguity, the first few values of Bn,2(0) are determined empirically,
and the condition

(4.7) Bn,2(0) =

{

2(−1)
n−1
2 /n! if n is odd

0 if n is even

is added to the recurrence (4.4). The polynomials Bn,2(x) are now uniquely deter-
mined. Similarly, the initial condition

(4.8) Cn,2(0) =

{

(−1)
n
2 /n! if n is even

0 if n is odd

adjoined to (4.5), determines Cn,2. The initial condition imposed on An,2 is simply
An,2(0) = 0.

The recurrence (4.4) is then employed to produce a list of the first few values of
Bn,2(x). These are then used to guess the closed-form expression for this family.
The same is true for Cn,2(x).

Proposition 4.2. The recurrence (4.4) and the (heuristic) initial condition (4.7)
yield

Bn,2(x) =
2

n!

n−1
2
∑

j=0

(−1)j
(

n

2j + 1

)

xn−2j−1(4.9)

=
1

i n!
[(x+ i)n − (x− i)n] .
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Similarly, the polynomial Cn,2 is given by

Cn,2(x) = 2

n
2
∑

j=0

(−1)j
(

n

2j

)

xn−2j(4.10)

=
1

2n!
[(x+ i)n + (x− i)n] .

In particular, the degree of Bn,2 is n− 1, and the degree of Cn,2 is n.

Proof. This follows directly from the recurrences (4.4) and (4.5). �

Corollary 4.3. The recurrence for An,2 can be written as

(4.11) A′
n,2(x) = An−1,2(x)−

1

n!

[

(x+ i)n−1 + (x− i)n−1
]

.

In particular, the degree of An,2 is n.

Proof. Simply replace the explicit expressions for Bn,2 and Cn,2 in the recur-
rence (4.6). �

4.2. Trigonometric forms. A trigonometric form of the polynomials Bn,2 and
Cn,2 is establihsed next.

Proposition 4.4. The polynomials Bn,2 and Cn,2 are given by

Bn,2(x) =
2

n!
(x2 + 1)n/2 sin(n arccotx)

Cn,2(x) =
1

n!
(x2 + 1)n/2 cos(n arccotx).

In particular,

(4.12)
Cn,2(x)

Bn,2(x)
=

1

2
cot(n arccotx).

Proof. The polar form

(4.13) x+ i =
√

x2 + 1 [cos(arccotx) + i sin(arccotx)]

produces

(4.14) (x+ i)n = (x2 + 1)n/2 [cos(n arccotx) + i sin(n arccotx)] .

A similar expression for (x− i)n gives the result. �

Proof. A second proof follows from the Taylor series

(4.15)
sin(z arctan t)

(1 + t2)z/2
=

∞
∑

k=0

(−1)k(z)2k+1

(2k + 1)!
t2k+1

and

(4.16)
cos(z arctan t)

(1 + t2)z/2
=

∞
∑

k=0

(−1)k(z)2k
(2k)!

t2k

where (z)n denotes the Pochhammer symbol. These series were established in [2]
in the context of integrals related to the Hurwitz zeta function.
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Indeed, the formula for Bn,2(x) comes from replacing t by 1/x and z by −n to
obtain

(4.17) sin(n arccotx) (x2 + 1)n/2 = −xn
∞
∑

k=0

(−1)k(−n)2k+1

(2k + 1)!
x−2k−1.

The result (4.9) now follows from the identity

(4.18) (−n)2k+1 =

{

−n!/(n− 2k − 1)! if 2k + 1 ≤ n

0 otherwise.

A similar argument gives the form of Cn,2(x) in (4.10). �

Note 4.5. The rational function Rn that gives

(4.19) cot(nθ) = Rn(cot θ)

appears in (4.12) in the form

(4.20) Rn(x) =
2Cn,2(x)

Bn,2(x)
.

This rational function plays a crucial role in the development of rational Landen
transformations [10]. These are transformations of the coefficients of a rational
integrand that preserve the value of a definite integral. For example, the map

a 7→ a
(

(a+ 3c)2 − 3b2
)

/∆

b 7→ b
(

3(a− c)2 − b2
)

/∆

c 7→ c
(

(3a+ c)2 − 3b2
)

/∆,

where ∆ = (3a+ c)(a+ 3c)− b2, preserves the value of

(4.21)

∫ ∞

−∞

dx

ax2 + bx+ c
=

2π√
4ac− b2

.

The reader will find in [12] a survey of this type of transformation and [11] the
example given above. The reason for the appearance of Rn(x) in the current context
remains to be clarified.

4.3. An automatic derivation of a recurrence for An,2. The formula (1.2) for
for the iterated integral can be used in the context of computer algebra methods.
In the case discussed here, the integral

(4.22) In(x) =
1

(n− 1)!

∫ x

0

(x− t)n−1 ln(1 + t2) dt

gives the desired iterated integrals of ln(1 + x2) for n ≥ 1.
A standard application of the holonomic systems approach, as implemented

in the Mathematica package HolonomicFunctions [6], yields a recurrence in n
for (4.22). The reader will find in [7] a description of the use of this package in the
evaluation of definite integrals. The recurrence

(4.23) n2(n− 1)In(x)

= x(3n− 2)(n− 1) In−1(x)−
(

3nx2 − 4x2 + n
)

In−2(x)

+ x
(

x2 + 1
)

In−3(x)
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is delivered immediately by the package. Using the linear independence of arctanx
and ln(1 + x2), it follows that each of the sequences An,2, Bn,2, and Cn,2 must
also satisfy the recurrence (4.23). Symbolic methods for solving recurrences are
employed next to produce the explicit expressions for An,2, Bn,2, and Cn,2 given
above.

Petkovšek’s algorithm Hyper [17] (as implemented in the Mathematica package
Hyper, for example) computes a basis of hypergeometric solutions of a linear re-
currence with polynomial coefficients. Given (4.23) as input, it outputs the two
solutions (x + i)n/n! and (x − i)n/n!. The initial values are used to obtain the
correct linear combinations of these solutions. This produces the expressions for
Bn,2(x) and Cn,2(x) given in Proposition 4.2.

However, the third solution is not hypergeometric and it will give the polynomi-
als An,2(x). It can be found by Schneider’s Mathematica package Sigma [22]:

An,2(x) =
i

n!

(

x ((x+ i)n − (x− i)n) +

n
∑

k=2

xk
(

(x− i)n−k+1 − (x+ i)n−k+1
)

(k − 1)k

)

,

with the initial values

A0,2(x) = 0, A1,2(x) = −2x, A2,2(x) = − 3
2x

2.

In summary:

Theorem 4.6. Define ak = k(k − 1) for k ≥ 2 and a1 = −1. The polynomial
An(x) introduced in (4.2) is given by

(4.24) An,2(x) =
1

i n!

n
∑

k=1

xk

ak

[

(x+ i)n−k+1 − (x− i)n−k+1
]

.

This can be written as

(4.25) An,2(x) =
1

n!

n
∑

k=1

(n− k + 1)!

ak
xkBn−k+1,2(x).

Note that the expression for An,2 given before is equivalent to the forms appear-
ing in Theorem 4.6.

Note 4.7. Similar procedures applied to the case of ln(1 + x) yield the evaluation
given in (2.2).

5. Arithmetical properties

In this section we discuss arithmetical properties of the polynomials Bn,2 and
An,2. The explicit formula for Bn,2 produces some elementary results.

Proposition 5.1. Let m,n ∈ N such that m divides n. Then Bm,2(x) divides
Bn,2(x) as polynomials in Q[x].

Proof. This follows directly from (4.9) and the divisibility of an−bn by am−bm. �

For odd n, the quotient of B2n,2(x) by Bn,2(x) admits a simple expression.

Proposition 5.2. Let n ∈ N. Define

(5.1) B∗
n,2(x) = xdegBn,2Bn,2(1/x).
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Then, for n odd,

(5.2)

(

2n

n

)

B2n,2(x) = (−1)
n−1
2 xBn,2(x)B

∗
n,2(x).

In particular, the sequence of coefficients in B2n(x) is palindromic.

Proof. The proof is elementary. Observe that

B∗
n,2(x) =

xn−1

in!

[(

1

x
− i

)n

−
(

1

x
− i

)n]

=
1

ixn!
[(1 + ix)n − (1− ix)n]

=
in−1

n!x
[(x− i)n − (−1)n(x+ i)n] .

It follows that

(5.3) B∗
n,2(x) =

(−1)
n−1
2

xn!
[(x+ i)n + (x− i)n] ,

and the result now follows directly. �

The explicit expression (4.24) for the polynomial An,2 can be written in terms
of the polynomials

(5.4) ϕm(x) = (x+ i)m − (x− i)m

as

(5.5) An,2(x) =
i

n!

[

xϕn(x)−
n
∑

k=2

xkϕn−k+1(x)

k(k − 1)

]

.

The polynomial An,2 is of degree n and has rational coefficients.
By analogy with the properties of denominators ofAn,1(x) mentioned in Section 2

and discussed at greater length in [13], we now study the denominators An,2(x) from
an arithmetic point of view. The first result is elementary.

Proposition 5.3. Let

(5.6) αn,2 := denominator of An,2(x).

Then αn,2 divides n! lcm(1, 2, . . . , n).

Proof. The result follows from (5.5) and the fact that the polynomials ϕm(x) have
integer coefficients. �

As in (2.3), it is useful to consider the ratio

(5.7) βn,2 :=
αn,2

nαn−1,2
.

Symbolic computations suggest the following.

Conjecture 5.4. The sequence βn,2 is given by

(5.8) βn,2 =































p if n = pr for some prime p and r ∈ N and n 6= 2 · 3m + 1
1
3 if n = 2 · 3m for some m ∈ N

3p if n = 2 · 3m + 1 and n = pr for some m, r ∈ N

3 if n = 2 · 3m + 1 for some m ∈ N and n 6= pr

1 otherwise.
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The formulation of this conjecture directly in terms of the denominators of
An,2(x) is as follows.

Conjecture 5.5. The denominator αn,2 of An,2(x) is given by

(5.9) αn,2 =











1 if n = 1

n! lcm(1, 2, . . . , n)/6 if n = 2 · 3m for some m ≥ 1

n! lcm(1, 2, . . . , n)/2 otherwise.

This conjecture shows that the cancellations produced by the polynomials ϕm(x)
in (5.5) have an arithmetical nature.

Proof that Conjecture 5.5 implies Conjecture 5.4. Assume that (5.9) holds for n ≥
1. If n = 2 · 3m, then αn,2 contains one fewer power of 3 than nαn−1,2. If n =
2 · 3m + 1, then αn,2 contains one more power of 3 than nαn−1,2. If n = pr is a
prime power, then αn,2 contains one more power of p than nαn−1,2. Otherwise
each prime appears the same number of times in αn,2 and nαn−1,2. �

The first reduction is obtained by expanding the inner sum in (5.5). Define

(5.10) Gn(x) = 2i

⌊n/2⌋−1
∑

k=0

(−1)k





n−1
∑

j=2k+1

1

(n− j)(n− j + 1)

(

j

2k + 1

)



xn−2k.

Proposition 5.6. We have

(5.11) An,2(x) =
i

n!
[x ((x+ i)n − (x− i)n) +Gn(x)] .

Proof. Expanding the terms (x + i)n−k+1 and (x − i)n−k+1 in the expression for
An,2(x) yields the sum

(5.12)
n−1
∑

j=1

xn+1−j

(n− j)(n− j + 1)

j
∑

k=0

(

j

k

)

xj−kik
(

(−1)k − 1
)

so only odd k contribute to it. Reversing the order of summation gives the result.
�

The next result compares the denominator αn,2 of An,2(x) and the denominator
of Gn, denoted by γn.

Corollary 5.7. The denominators αn,2 and γn satisfy

(5.13) n!αn,2 = γn.

We now rephrase Conjecture 5.5 as the following.

Conjecture 5.8. For n ≥ 2,

(5.14) γn =

{

lcm(1, 2, . . . , n)/3 if n = 2 · 3m for some m ≥ 1

lcm(1, 2, . . . , n) otherwise.

The next theorem establishes part of this conjecture, namely the exceptional role
that the prime p = 3 plays. The proof employs the notation

(5.15) gn,k(j) =
1

(n− j)(n− j + 1)

(

j

2k + 1

)
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so that

(5.16) Gn(x) = 2i

⌊n/2⌋−1
∑

k=0

(−1)khn,kx
n−2k

with

(5.17) hn,k :=

n−1
∑

j=2k+1

gn,k(j) =

n−1−2k
∑

i=1

1

i(i+ 1)

(

n− i

2k + 1

)

.

Therefore

(5.18) γn = lcm {denominator of hn,k : 0 ≤ k ≤ ⌊n/2⌋ − 1} .
Let νp(n) be the exponent of the highest power of p dividing n — the p-adic

valuation of n. The denominators in the terms forming the sum hn,k are consecutive
integers bounded by n. Therefore

(5.19) ν3(γn) ≤ ν3(lcm(1, 2, . . . , n)).

In fact we can establish ν3(γn) precisely.

Theorem 5.9. The 3-adic valuation of γn is given by

ν3(γn) =

{

ν3(lcm(1, 2, . . . , n))− 1 if n = 2 · 3m for some m ≥ 1

ν3(lcm(1, 2, . . . , n)) otherwise.

Proof. The analysis is divided into two cases.

Case 1. Assume that n = 2 · 3m. We show that ν3(γn) = m− 1.

The bound (5.19) shows that ν3(γn) ≤ m.

Claim: ν3(γn) 6= m. To prove this, the coefficient

(5.20) hn,k =

n−1−2k
∑

i=1

1

i(i+ 1)

(

n− i

2k + 1

)

is written as

(5.21) hn,k = S1(n, k) + S2(n, k)

where S1(n, k) is the sum of all the terms in hn,k with a denominator divisible by
3m and S2(n, k) contains the remaining terms. This is the highest possible power
of 3 that appears in the denominator of hn,k.

It is now shown that the denominator of the sum S1(n, k) is never divisible by
3m.

Step 1. The sum S1(n, k) contains at most two terms.

Proof. The index i satisfies i ≤ 2 · 3m − 1− 2k < 2 · 3m. The only choices of i that
produce denominators divisible by 3m are i = 3m, 3m − 1 and i = 2 · 3m − 1. The
term corresponding to this last choice is 1

(2·3m−1)·2·3m

(

1
2k+1

)

, so it only occurs for

k = 0. In this situation, the term corresponding to i = 3m is 1/(3m + 1) and it
does not contribute to S1. �

Step 2. If 1
2 (3

m − 1) < k ≤ 3m − 1, then S1(n, k) is the empty sum. Therefore the
denominator of hn,k is not divisible by 3m.
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Proof. The index i in the sum defining hn,k satisfies 1 ≤ i ≤ 2 · 3m − 1 − 2k. The
assumption on k guarantees that neither i = 3m nor i = 3m − 1 appear in this
range. �

Step 3. If k = 1
2 (3

m − 1), then the denominator of S1(n, k) is not divisible by 3m.

Proof. In this case the sum S1(n, k) is

1

3m(3m + 1)
+

3m + 1

(3m − 1)3m
=

3m + 3

32m − 1
. �

Step 4. If 0 < k < 1
2 (3

m − 1), then the denominator of S1(n, k) is not divisible by
3m.

Proof. The proof of this step employs a theorem of Kummer stating that νp(
(

a
b

)

)
is equal to the number of borrows involved in subtracting b from a in base p. By

Kummer’s theorem,
(

3m

2k+1

)

and
(

3m+1
2k+1

)

are divisible by 3, so neither of the two

terms in S1(n, k) has denominator divisible by 3m. �

Step 5. If k = 0, then the denominator of S1(n, k) is not divisible by 3m.

Proof. For k = 0 we have

(5.22) hn,0 =

n−1
∑

i=1

n− i

i(i+ 1)
=

n−1
∑

i=1

(

n− i

i
− n− (i+ 1)

i+ 1
− 1

i+ 1

)

= n−Hn,

and the two terms in Hn whose denominators are divisible by 3m add up to

(5.23)
1

3m
+

1

2 · 3m =
1

2 · 3m−1

with denominator not divisible by 3m. �

It follows that, for n = 2 · 3m, the denominator of the term hn,k is not divisible
by 3m. Thus, ν3(γn) ≤ m− 1.

Claim: ν3(γn) ≥ m− 1. This is established by checking that 3m−1 divides the de-
nominator of hn,0. Indeed, there are six terms in hn,0 = n−Hn whose denominators
are divisible by 3m−1, and their sum is

(5.24)

6
∑

i=1

1

i · 3m−1
=

H6

3m−1
=

49

20 · 3m−1
.

Therefore 3m−1 divides the denominator of hn,0. This completes Case 1.

Case 2. Assume now that n is not of the form 2 · 3m. This states that the base 3
representation of n is not of the form 200 · · · 003.

Let r = ⌊log3 n⌋, so that 3r is the largest power of 3 less than or equal to n. We
show that ν3(γn) = r by exhibiting a value of the index k so that the denominator
of hn,k is divisible by 3r.

Step 1. Assume first that the base 3 representation of n begins with 1. Then
choose k = 0. As before, hn,0 = n−Hn. Observe that each term in the sum

(5.25) lcm(1, 2, . . . , n) ·Hn =
n
∑

i=1

lcm(1, 2, . . . , n)

i

is an integer. The condition on the base 3 representation of n guarantees that only
one of these integers, namely the one corresponding to i = 3r, is not divisible by
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3. Thus there is no extra cancellation of powers of 3 in Hn, and as a result the
denominator of Hn is divisible by 3r.

Step 2. Assume now that the base 3 representation of n begins with 2. As in the
discussion in Case 1, there are two terms in the sum

(5.26) hn,k =
n−1−2k
∑

i=1

1

i(i+ 1)

(

n− i

2k + 1

)

with denominators divisible by 3r. The sum of these terms is

(5.27)
1

3r(3r + 1)

(

n− 3r

2k + 1

)

+
1

(3r − 1)3r

(

n− 3r + 1

2k + 1

)

.

Now choose k = 1
2 (3

r+3ν3(n)) and check using Kummer’s theorem and considering
the value of n mod 3, that 3 divides exactly one of the two binomial coefficients
appearing in (5.27). This shows that hn,k has precisely one term with denominator
divisible by 3r. The argument is complete. �

Corollary 5.10. The 3-adic valuation of the denominator αn,2 of An,2(x) is

ν3(αn,2) =

{

ν3(n! lcm(1, 2, . . . , n))− 1 if n = 2 · 3m for some m ≥ 1

ν3(n! lcm(1, 2, . . . , n)) otherwise.

Note 5.11. The proof of Conjecture 5.5 has been reduced to the identity

(5.28) νp(γn) = νp(lcm(1, 2, . . . , n))

for all primes p 6= 3.

The sequence 2 ·3m appearing in the previous discussion also appears in relation
with the denominators of the harmonic numbers Hn. As before, write

(5.29) Hn =
Nn

Dn

in reduced form. The next result considers a special case of the quotientDn−1/Dn of
denominators of consecutive harmonic numbers. The general case will be described
elsewhere [23].

Theorem 5.12. Let n ∈ N. Then D2·3n−1 = 3D2·3n .

Proof. An elementary argument shows that ν2(Dn) = ⌊log2 n⌋. Therefore Nn is
odd and Dn is even.

Observe that
N2·3n

D2·3n
=

N2·3n−1

D2·3n−1
+

1

2 · 3n(5.30)

=
2 · 3nN2·3n−1 +D2·3n−1

2 · 3nD2·3n−1
.

Therefore the denominator D2·3n is obtained from 2 · 3nD2·3n−1 by canceling the
factor

(5.31) w = gcd (2 · 3nN2·3n−1 +D2·3n−1, 2 · 3n ·D2·3n−1) .

That is,

(5.32) 2 · 3nD2·3n−1 = w ·B2·3n .

Lemma 5.13. The number w has the form 2α · 3β , for some α, β ≥ 0.



16 T. AMDEBERHAN, C. KOUTSCHAN, V. MOLL, AND E. ROWLAND

Proof. Any prime factor p of w divides

2 · 3n · (2 · 3nN2·3n−1 +D2·3n−1)− 2 · 3n ·D2·3n−1 = 22 · 32n ·D2·3n−1.

Then p is a common divisor of 2 · 3n ·N2·3n−1 and 2 · 3n ·D2·3n−1. The harmonic
numbers are in reduced form, so p must be 2 or 3. �

The relation (5.32) becomes 2 · 3nD2·3n−1 = 2α · 3βD2·3n , and replacing this
in (5.30) yields

(5.33) 2α · 3βN2·3n = 2 · 3nN2·3n−1 +D2·3n−1.

Define t = ⌊log2(2 · 3n − 1)⌋ > 1 and write D2·3n−1 = 2tC2·3n−1 with C2·3n−1 an
odd integer. Then (5.33) becomes

(5.34) 2α−1 · 3βN2·3n − 2t−1C2·3n−1 = 3nN2·3n−1.

A simple analysis of the parity of each term in (5.34) shows that the only possibility
is α = 1.

The relation (5.33) now becomes

(5.35) 3n ·D2·3n−1 = 3β ·D2·3n .

In the computation of the denominator D2·3n we have the sum

(5.36) 1 +
1

2
+

1

3
+ · · ·+ 1

3n
+ · · ·+ 1

2 · 3n − 1
+

1

2 · 3n
so that the maximum power of 3 that appears in a denominator forming the
sum (5.36) is 3n. Simply observe that 3n+1 > 2 · 3n − 1. The combination of
all the fractions in the sum (5.36) with denominator 3n is

(5.37)
1

3n
+

1

2 · 3n =
2 + 1

2 · 3n =
1

2 · 3n−1
.

It follows that the maximum power of 3 in (5.36) is at most 3n−1.
The the terms in (5.36) that contain exactly 3n−1 in the denominator are

(5.38)
1

3n−1
,

1

2 · 3n−1
,

1

4 · 3n−1
,

1

5 · 3n−1
,

and these combine with the two terms with denominator exactly divisible by 3n to
produce

(5.39)

(

1 +
1

2
+

1

4
+

1

5

)

· 1

3n−1
+

1

2 · 3n−1
=

49

20 · 3n−1
.

The rest of the terms in (5.36) have at most a power of 3n−2 in the denominator.
The total sum can be written as

(5.40)
49

20 · 3n−1
+

xn

yn · 3n−2
=

49yn + 60xn

20yn · 3n−1

and no cancellation occurs. Therefore 3n−1 is the 3-adic valuation of D2·3n . Write
D2·3n = 3n−1 · E2·3n , where E2·3n is not divisible by 3.

Now consider the denominator D2·3n−1. Observe that

(5.41) 1 +
1

2
+ · · ·+ 1

2 · 3n − 1
=

1

3n
+

xn

yn · 3n−1
=

yn + 3xn

yn · 3n ,

with yn not divisible by 3. Therefore 3n is the 3-adic valuation of D2·3n−1. Write
D2·3n−1 = 3n · E2·3n−1 where E2·3n−1 is not divisible by 3.



THE ITERATED INTEGRALS OF ln(1 + x2) 17

The relation (5.35) now reads 32nE2·3n−1 = 3β+n−1E2·3n and this gives β = n+1.
Replacing in (5.35) produces D2·3n−1 = 3D2·3n , as claimed. �

6. The iterated integral of ln(1 + x3)

The method of roots described in Section 3 shows that the iterated integral of
ln(1 + x3) can expressed in terms of ln(x+ 1) and the real and imaginary parts of
ln(x− ω), where ω = eπi/3 satisfies ω3 = −1. The relation

(6.1) ln(x− ω) =
1

2
ln(x2 + x+ 1) + i

[

π

2
− arctan

(

1− 2x√
3

)]

gives the functions that will appear in the example considered in this section.

Note 6.1. In order to obtain these functions from a purely symbolic approach,
consider a brute force evaluation of these iterated integrals using Mathematica to
evaluate (1.4). The results are expressed in terms of the functions

(6.2) h1(x) = 2F1(
1
3 , 1;

4
3 ;−x3) and h2(x) = 2F1(

2
3 , 1;

5
3 ;−x3),

where

(6.3) 2F1(a, b; c; z) =

∞
∑

k=0

(a)k (b)k
(c)k k!

zk

is the classical hypergeometric series. The first few values are

f1(x) = −3x+ x ln(1 + x3) + 3xh1(x)

f2(x) = −9x2

4
+

1

2
x2 ln(1 + x3) + 3x2h1(x)−

3x2

4
h2(x)

f3(x) = −11x2

12
+

1

6
(x3 + 1) ln(1 + x3) +

3x3

2
h1(x)−

3x3

4
h2(x).

The hypergeometric terms appearing above can be expressed as

h1(x) =
ln(1 + x)

3x
− ω ln(1− ω̄x)

3x
+

ω̄ ln(1− ωx)

3x
,

h2(x) = −2 ln(1 + x)

3x2
− 2ω̄ ln(1− ω̄x)

3x2
+

2ω ln(1− ωx)

3x2
,

with ω = eπi/3 = 1
2 (−1 + i

√
3), as before. These expressions can be transformed

into the functions obtained in (6.1).

Introduce the notation

u =
√
3 arctan

(

1− 2x√
3

)

,

v = ln(1 + x),

w = ln(x2 − x+ 1),

and, based on the data described above, make the ansatz that there exist polyno-
mials An,3, Bn,3, Cn,3, and Dn,3 in Q[x] such that

(6.4) fn(x) = An,3(x) +Bn,3(x)u+ Cn,3(x)v +Dn,3(x)w.

As in the previous two cases, it is easy to conjecture closed forms for all but one
of these polynomials. The result is given next.
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Theorem 6.2. Define

χ3(k) =











0 if k ≡ 0 mod 3

1 if k ≡ 1 mod 3

−1 if k ≡ 2 mod 3

and

λ(k) =

{

1 if k ≡ 0 mod 3

0 if k 6≡ 0 mod 3.

Then

Bn,3(x) = − 1

n!

n−1
∑

k=0

χ3(n− k)

(

n

k

)

xk

Cn,3(x) =
1

n!
(1 + x)n =

1

n!

n
∑

k=0

(

n

k

)

xk

Dn,3(x) =
1

2n!

n
∑

k=0

(3λ(n− k)− 1)

(

n

k

)

xk.

Proof. The method of roots developed in Section 3 shows that the iterated integral
can be expressed in the form (6.4). The polynomials An,3, Bn,3, Cn,3, Dn,3 will be
linear combinations of the powers (x + 1)n, (x + ω)n, and (x + ω̄)n. Comparing
initial values, it is found that

Bn,3(x) =
i

n!

(

(x+ z1)
n − (x+ z2)

n
)

,

Cn,3(x) =
1

n!
(x+ 1)n,

Dn,3(x) =
1

2n!

(

(x+ z1)
n + (x+ z2)

n
)

.

Note that the above expressions can also be automatically found as solutions of the
fourth-order recurrence that HolonomicFunctions derives in this case:

(6.5) (n− 2)(n− 1)n2Fn

= (n− 2)(n− 1)(4n− 3)xFn−1 − 3(n− 2)(2n− 3)x2Fn−2

+
[

(4n− 9)x3 + n
]

Fn−3 − x(x3 + 1)Fn−4

The above closed forms for Bn,3 and Dn,3 can be used to derive explicit expres-
sions for their coefficients:

Bn,3(x) =
i

n!

n
∑

k=0

(

n

k

)

xk
(

zn−k
1 − zn−k

2

)

.

The value of the last parenthesis can be found by case distinction using the fact
that z31 = z32 = 1:

n− k ≡ 0 mod 3 : 1− 1 = 0,

n− k ≡ 1 mod 3 : z1 − z2 = −i
√
3,

n− k ≡ 2 mod 3 : z21 − z22 = i
√
3.
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It follows that

Bn,3(x) = − 1

n!

n
∑

k=0

χ3(n− k)

(

n

k

)

xk.

The similar computations for Cn,3(x) and Dn,3(x) are left to the reader. �

As before, the closed-form expression for the pure polynomial part An,3(x) is
more elaborate. The first values are given by

(6.6) A0,3(x) = 0, A1,3(x) = −3x, A2,3(x) = − 9
4x

2, A3,3(x) = − 11
12x

3.

Schneider’s Mathematica package Sigma is used again to obtain, from the recur-
rence (6.5) and the initial conditions, the expression

(6.7) An,3(x) =
1

n!

n
∑

k=1

xk

k

[

(x+ 1)n−k + (x+ ω)n−k + (x+ ω̄)n−k
]

.

Here ω = 1
2 (−1 + i

√
3).

6.1. Arithmetical properties of An,3. Define αn,3 to be the denominator of An,3

and βn,3 = αn,3/(nαn−1,3).

Conjecture 6.3. The sequence βn,3 is given by

(6.8) βn,3 =



















p if n = pm 6= 3 for some prime p and m ∈ N
1
11 if n = 3 · 11m for some m ∈ N

11 if n = 3 · 11m + 1 for some m ∈ N

1 otherwise.

Observe that this expression for βn,3 does not have the exceptional case where
3 · 11m + 1 is a prime power that appears in βn,2 given in (5.8). This is ruled out
by the following.

Lemma 6.4. Let m ∈ N. Then 3 · 11m + 1 is not a prime power.

Proof. The number 3 · 11m + 1 is even, so only the prime 2 needs to be checked.
We have 3 ·11m+1 ≡ 3m+1+1 6≡ 0 mod 8 since the powers of 3 are 1 or 3 modulo
8. Therefore 3 · 11m + 1 (since it is larger than 4) is not a power of 2. �
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