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ABSTRACT. The definite integral
4 (/2 24
M(a) = — / Qx m
o 22+ 1In*(2e%cosz)

.
is related to the Laplace transform of the digamma function

L(a) := ./(;00 e (s +1)ds,

by M(a) = L(a) + v/a when a > In2. Certain analytic expressions for M (a)
in the complementary range, 0 < a < In 2, are also provided.

1. INTRODUCTION

The classical table of integrals by I. S. Gradshteyn and I. M. Ryzhik [7] contains
a large collection organized in sections according to the form of the integrand. In
each section one finds a significant variation on the complexity of the integrals. For
example, section 4.33—4.34, with the title Combinations of logarithms and exponen-
tials, presents the elementary formula 4.331.1. For a > 0,

e 1
(1.1) / e “lnerdr = —w,
O a
where v is the Fuler constant
RS
(1.2) ’y:nh_)rréoZE —Inn.

k=1
Contained in the same section are the more elaborate 4.332.1 and 4.325.6:

o 1
[F e (1) (B (1),
o ef+eT—1 r)x?—x+1 /3\6 6

The difficulty involved in the evaluation of a definite integral is hard to measure from
the complexity of the integrand. For instance, the evaluation of Vardi’s integral,

/2 1 T(3)v/2
(1.3) / Inlntanzdz = / Inln <1) & 2 = I Llﬁ )
/4 0 xT 1+ 2 F(—)
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that appears as 4.229.7 in [7], requires a reasonable amount of number theory.
The second integral form is 4.325.4, found in the section entitled Combinations of
logarithmic functions of more complicated arguments and powers. The reader will
find in [I5] a discussion of this formula.

It is a remarkable fact that combinations of elementary functions in the integrand
often exhibit definite integrals whose evaluation is far from elementary. A system-
atic study of the formulas in [7] has been initiated in the series [I1 2] 9] 10} [T, 12].
These papers are organized according to the combinations appearing in the in-
tegrand. Even the elementary cases, such as the combination of logarithms and
rational functions discussed in [2], entail interesting results. The evaluation

b Intdt 1 1
(1.4) /OW = L[ (45 b— (1 +b)

L nil " s+ 1,20
n(I+o) T i\ IR

for b > 0 and n € N, produces an explicit formula for the case where the rational
function has a single pole. Here, |s(n, k)| are the unsigned Stirling numbers of the
first kind, which count the number of permutations of n letters having exactly k
cycles. The case of a purely imaginary pole,

* Intdt ) = tan~ !z + ()
/o ( [go(x)ern(x)lnxkz_%m’c] 7

1+t2)n+1 To92n

is expressed in terms of the rational function
" )
227 T
(15) pale) =Y
and with

(1.6) go(r) =Inz tan ' a — /
0

The special case x = 1 becomes

U Intdt 2n T 4 pe(1)
L. — =27 42
(7 /0 (L+ ) <n> “rL o )

where

- (DF
(1.8) G—’;W

is Catalan’s constant. The values

(1.9) OB IEES

do not admit a closed form (in the sense of [14]), but they do satisfy the three-term
recurrence

(1.10) (2k + D)pr41(1) — Bk + 1)pr(1) + kpr—1(1) = 0.
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The study of definite integrals, where the integrand is a combination of pow-
ers, logarithms and trigonometric functions, was initiated by Euler [5], with the
evaluation of

w/2
(1.11) /0 z In(2coszx) de = —1—76C(3)
and

/2 -
(1.12) /0 22 In(2cos z) dr = _ZC(3)’

which appear in his study of the Riemann zeta function at the odd integers. These
type of integrals have been investigated in [§], [I6]. The intriguing integral of
D. and J. Borwein [3],

117 117
(4> = )
16 1440
was first conjectured on the basis of a numerical computation by Enrico Au-Yueng

while he was an undergraduate student at the University of Waterloo. A nice ex-
ample of experimental mathematics in action.

/2
(1.13) / 22 In*(2cos z) dx =
0

Recently O. Oloa considered the integral

4 w/2 24
(1.14) M(a) == —/ o= :
mJo  x?+1n“(2e~?cosx)
and the special value
4 (/2 2% dx 1
1.15 M(0) =— ———— = (1 4+ In(27) —
(1.15) =7 Friram — 21t hen )

is established in [13].
Oloa’s method of proof relies on the expansion

2 ad 1 { an Ap+1
(1.16) ———5——— ==sin2z+ » (-1)"" (— — ) zsin(2nz).
n=1

22 4 In*(2cos x) n! (n+1)!

Here

(1.17) an = /Ol(t)n dt,

where (t),, = t(t+1) .- (t+n—1) is the Pochhammer symbol. The standard relation

(1.18) (O =D Is(n, k)|t*

k=1
gives

— [s(n, k)|
1.19 an = .
(119 2

M. L. Glasser and D. Manna [6] introduced the function

(1.20) L(a) :== /000 e (s +1)ds,
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where ¢(z) = “L InT () is the digamma function. After integrating by parts and
making use of (L)), one finds

(1.21) L(a)=—y—Ina+ a/ e InT(t)dt.
0

The main result in [6] gives a relation between M (a) and L(a).

Theorem 1.1. If a > In2, then

That is, for a > In2,
(1.22) M(a) = 7 ffyflnaJra/ e~ 1InT(t) dt.
a 0

The proof in [6] begins with the representation
(v +2)
v w4+ DI+ 5+9)T(1+5-%)

(3.631.9 in [7]). Differentiating with respect to a, evaluating at a = s, and using
P(1) = —y yields

w/2
(1.23) / cos” z cosaxr dx =
0

2s+2
(1.24) (s +1) =

w/2
/ x cos’® x sin(sx) dr — 7.
T Jo

Replacing (L24) into (L20) produces
4 o0 71'/2 Ca . .
(125) L(a) + 1 - __ Im/ / xes(ln[2e CObZ]*ZI) dr ds.
a ™ 0 0
The identity (L22) follows from evaluating the s-integral as

[e%s} a . 1
1.26 s(ln[Ze cosx}fzz) ds = )
(126) /0 ¢ T iz —In [2e~¢ cos z

The authors of [6] produced a series expansion for M (a), which they recognize
as a hypergeometric function in two variables, and state that this strongly suggests
that for a general value of a, no further progress is possible. The hypergeometric
expression gives

1 1
(1.27) M(0) =1+ 5/ t(1— 1) sF(1,1,2 — £;2,3; 1) dt,
0

on which they invoke

21—y — vt +1))
1-—t

(1.28) 3Fy(1,1,2 - ;2,3;1) =

to give a new proof of (LIH).

The graph of M(a) shown in Figure 1, obtained by the numerical integration of
(LI4), has a well-defined cusp at @ = In2. In this paper, analytic expressions for
both branches of M(a) are provided. The region ¢ > In2, determined in [6], has
been reviewed in the present section. The corresponding expressions for 0 < a < In2
is the content of the next section.
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FIGURE 1. The graph of M(a) for 0 <a <2

2. THE CASE 0 < a <1In2

The representation
1 ’Lw
(2.1) M(a) Im/ *at/ 20+
1—e® +ei® e””

was established in [6]. Their proof is replicated here for the sake of the reader’s
convenience. The identity
2

(2.2) Im - v = o
ir+1In[2e~@cosx] 22+ In® [2e~¢ cos 2]
yields
4 /2 d
(2.3) M(a) = — Im/ : T .
T o tx+In[2e=%cosx]

If @ > In2, then

0 —a . 1
(24) / es ln[2e cos a;]Jrzw ds = : )
0 iz + In [2e% cos z]

This implies
/2 W )

(2.5) M(a) == Im / et (n[2e™" cosal+iz) g, ds,
—m/2

where one uses the fact that the imaginary part of the integrand is an even function
of z. One more identity,

(2.6) eism . esln[Qefacosx] — ¢8 ln[67“(1+62”)],

and the change of variables x — z / 2 give the equality

Evaluating the s-integral ylelds

(2.8) M(a) = —ilm/j %
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The formula
1 Lot dt
2.9 — =
(29) Inu /0 u—1
now gives (Z1I)) from ([2.8).
Note 2.1. The proof outlined above is valid for ¢ > In2, but (1)) holds for a > 0.

Notation. Define b:=e* —1and let 0 < a <In2so that 0 < b < 1.

The terms (1 + ™) and 1/(1 — be~*) from (Z.I)) are now expanded in a power
series to produce

// xe_“tZZb]<)sm 1) dudt.

7=0 k=0

The term corresponding to k = j+1 disappears, and a computation of the z-integral
gives

(2.10) M(a) = e /1 e—atii(_l)j—k : bj(li) dt
0 -

§=0 k=0 jHl-k
1 00 j
: (—1)”< t >
+ e[ ey VY
/0 ; ; v v+
Lemma 2.1. Lett € R and j € NU{0}. Then
(-1t t ,
(2.11) >y — =) wG+1)—yE+1)].
v=1 v I/+‘7 J

Proof. The integral representation (3.268.2 in [7])

P —

(2.12) Bt 1) — g +1) = - /

-
yields

(2.13) Y(p+1)—P(g+1) i <<J> - <§>) '

The result now follows from the identity

(2.14) (,i)li (_;)m (mik) - C 1)’”( )

m=1

M
HMw

m—l (k?)
Apply the difference operator Aa(k) := a(k + 1) — a(k) and use

(2) () () (M) ) ()

to write the derived equation as

w5 - ()

m=1
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The left hand side of (214)) reduces to —1/(k 4+ 1) in view of the classical identity

S () ()

m=1

A simple evaluation of the right hand side in (ZI4) also produces —1/(k + 1).
Therefore both sides of (2.I4]) are, up to a constant, the harmonic number Hy. The
special case k = 0 shows that this constant vanishes. (I

Continuing from (Z.I0)), it follows that
(2.17)

M) /ZW;) w5 [ (e va
_ %/0 eatjz_:lbj<j>¢(t+1)dt—M1+M2+M3-

To simplify M, observe

Sy CE s () Y

j=0 k=0 k=0

=0
o In(14b) o (), ae
- T Z<k>b -

k=0

Thus, M; =a/(1 —e™%).

The reduction of Ms employs the following result.
Lemma 2.2. If0 < a <1n2, then

(2.18) / —“thJ( ) Y(j+1)dt 1n(1—e—a)+/1oo e;at dt.

Proof. The Stirling numbers s(j, k) satisfy

(2.19) J'C) - Ej:s(j, k)t

k=0
so that
7“[) oo )
(2.20) / “thJ( ) (j+1)dt Ty Z VHa;—ba; 1)p(i+1),
with
(2.21) a( j' Z ak+1 -.
The result now follows from integration by parts and the identity
0 (s i k
5(j, k)" In"(1+b)
(2.22) > R 0



3218 TEWODROS AMDEBERHAN, OLIVIER ESPINOSA, AND VICTOR H. MOLL

Therefore,
In(1 —e™9) 1 o0 gmat
(2.23) My = T + 1 e_“/l ; dt.
Finally,

Mng%/o et ; G)bj 1/)(t+1)dt:f%/0 (L—e ")p(t+ 1) dt.

A direct computation shows that fol P(t+1)dt = 0, and integration by parts gives

1
a —at
(2.24) M = 5 —e—a/o e~ InT(t + 1) dt.

The identity InT'(¢ + 1) = InT'(¢) + Int now yields

1 1
Mj = a4 — (/ e Intdt +/ e~ Inl(t) dt) .
1—e @ 0 0

Replacing (2.17), (2.19) and (2.21) into (ZI7)) provides an expression for M (a):

a v In(l—e®)
225) M = -
( ) (a) 1—e*“+a+ 1—e@

1—ea
The term v/a comes from the index 7 = 0 in the sum (2I8). The main result

presented here now follows from (LLI). This settles a conjecture of O. Oloa presented
in [13).

Theorem 2.1. If 0 < a < In2, then

a o a !
+ / e “Intdt + — / e~ InT(t) dt.
0 1 0

v a+In(l—e®*) —vy—Ina a

1
M(a) = =+ 9 InT(t) dt.
(@) a+ 1—e@ +1—e—a/06 nl'(t)

The above result is complementary to Theorem [l

Corollary 2.1. If0 < a <1n2, then

7, +In(1-e"*)+T(0,a)

M =
(@)=~ ppp—

1 v
“at(t + 1) dt
—Fl—e“l/o6 et 1)db

where T'(0,a) is the incomplete gamma function.

Proof. Split up the first integral in (Z28]) and integrate by parts. O
The derivative of [2]) at a = 0, the classical values
1
1

(2.26) / InT(¢)dt = 3 In27

0
and

1 !
¢ 1 gl

2.27 tInl'(t)dt = —In2r — —
(2.27) /0 nl(t) o2 T T T 1y

obtained in [4], give
/”/2 a?In(2cosx)de  Tm  wmln2r  ('(2)
o

2.28 _ T .
(2.28) 22 +1n*(2cos )2 192 96 167
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Further differentiation of ([Z.I) produces the evaluation of a family of integrals

similar to (2.28).

The integral in (2.1 can be expressed in an alternative form. Define
— i ~
(2.29) A(z) :== lim Z i Inn

n—oo
j=1

Observe that A(0) =+, so A(z) is a generalization of Euler’s constant.

Lemma 2.3. Leta>0,c=1—¢e"% and define A:=1In2w +~. Then

! Ala—c¢) ¢ a = Inj
2. T (t)dt = > — — A 2 —_— -
(2.30) /0 e Inl'(®) a? 2a (271') + C; a? + 4n2j2

Proof. Expand the exponential into a MacLaurin series and use the value

L 1 2 n+1Y\ (2k)! ,
/O T () de 1 <_1>k<2k_1)W[A<<2k>—<<2k>1

—~

1)k (”2; 1) 2((;]3!%4(% +1) + IZﬁ

given as (6.14) in [4]. Then interchange the resulting double sums. O

The next corollary follows from the identity M (a) = L(a) + v/a.

Corollary 2.2. If0<a<In2 andc=1—e"%, then

(2.31) / e~ InT(t) dt = Jﬂn%A(“_C),iA( a )+22h173
0

ace? a?c 2a

Lemma 2.4. Let f(t) =27¢InT(t). Then

° B ! v+ 1Inln2
(2.32) /0 floydt = 2/0 f(t)dt — EETOR
1

(v+nln2)(1+2n2)-1
In?2 '

(2.33) /Oootf(t)dt - 2/0(t+1)f(t)dt—

Proof. The function f(t) satisfies f(t+1) = 3 f(t)+ 327" Int. Splitting the integral

o] 1 o]
(2.34) / F(t) di = / (1) dt +/ Flt+1)dt
0 0 0
and using (L)) gives the first result. The proof of (233) is similar; it only requires
differentiating (II]) with respect to the parameter a. O

The reader will check that ([232) is equivalent to the continuity of M(a) at
a = In2. The identity (Z33]) provides a proof of the next theorem, which in itself
is worthy of singular (pun intended) interest.

Theorem 2.2. The jump of M'(a) at a =1n2 is 4.



322

0 TEWODROS AMDEBERHAN, OLIVIER ESPINOSA, AND VICTOR H. MOLL

3. CONCLUSIONS

The integral

4 (/2 22 dz
M(a) = —/ 5 5
T Jo a2+ 1n"(2e~?cosx)
satisfies
(3.1) M(a) =2 +/ e~ p(t + 1) dt
a 0
for ¢ > In2 and
In(1 — e~ %) +T(0, 1 !
M(a):1+a+n( e ) +10a) /e*‘”w(tjtl)dt
a 1—ea 1—e J,
for0<a<In2.
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