BROKEN BRACELETS, MOLIEN SERIES, PARAFFIN WAX
AND AN ELLIPTIC CURVE OF CONDUCTOR 48

TEWODROS AMDEBERHAN, MAHR BILEN CAN, AND VICTOR H. MOLL

AsstracT. Certain enumeration questions arising from the study of bi
nary necklaces are solved. Applications and interpretatéwe provided.

1. INTRODUCTION

A jeweler is asked to design a necklace consisting of a chaimrvplace-
ments fork pieces of diamond. The client ask for one group diamonds
to be placed next to each other and the remaining diamonds & iso-
lated, that is, each one is mounted so that the two adjacaceplare left
empty. These special diamonds are calledrtfeslallionof the necklace.
Figure 1 shows a necklace of length 20, with a medallion oftler> and
four extra diamonds.

Ficure 1. A necklace with a medallion.
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Ficure 2. A configuration.
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Ficure 3. A forbidden configuration.

A configurationis a broken necklace resulting from one of the 1 cuts
to the left, right or in between the medallion. Figure 2 shawsnfiguration
and Figure 3 depicts a forbidden cut.

Labeln vertices agl, 2,--- ,n— 1, n}. Theneighborsof the vertex are
i—21andi+1for2<i<n-1;the single vertex 2 for= 1 and the single
vertexnfori = n—1. Configurations consist of a linear arraymofertices k
of which aremarkedor painted red The marked vertices are eithsolated
that is, its neighbors are not markedaamnectedthat is, the sequence of
vertices{i,i+1,i+2,---, j} are all marked. In the latter case, it must be the
case that = 1 or j = n; that is, connected marked vertices contain h.or

Question 1 Determine the numbeii(n) of configurations up to symmetry.

The problem above, sans restriction, may be interpretedamaay neck-
lace a periodic chain made of two kinds of beads. The classicilten
counting all binary necklaces witnbeads is given by MacMahon formula

1) NE) = = ()2

din

where the summation runs through all divisdrsf n, andg(d) is theEuler
totientfunction counting the numbers 2,.. ., d relatively prime tod.

A simple parity distinction im surprisingly isolatesllowed from for-
biddennecklaces in supersymmetry [5]. The restrictions arisefRauli
exclusion principle, a result of anti-symmetry of planaatss. In this con-
text, a necklace is called forbidden if and only if it HAssymmetry fork
even and~/k is odd. HereF is the number of fermionic quanta. The state-
ment in [5] is that the number of allowed and forbidden necésais given,
respectively, by

1
(12) Natowed) = = D ¢(d)2",
dﬂrz:id
and
1
(1.3) Ntorbidder(N) = n Z p(d)2"".

din
deven

This enumeration under Pauli principle is closely relatedur initial ques-
tion of the forbidden necklace problem.
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2. THE NUMBER OF CONFIGURATIONS

In this section the counting problem from the Introductierreéphrased
and solved. The current format as well as the original foatioh will be
used interchangeably:

determine the number@) of painting k points in red from a linear array
of n of them, with the condition that consecutive red pointsaay appear
at the beginning or at end of the array. Moreover, arrays tha reflections
of each other should be counted only once.

In order to determine the number of configurati@) it is convenient
to begin with a simpler count.

Proposition 2.1. Let f(n) be the number of arrangements rofvertices
with k marked vertices, no consecutive marked ones where refhscaie
not identified. Then

n—k+ 1)

(2.1) fi(n) = ( K

Proof. Each such arrangement can be obtained by placind tmarked
vertices and choosinig— 1 places to separate them. The count is obtained
by eliminating the separating spaces. O

Reduced configurationg he next step is to count those configurations ob-

tained by cutting the necklace exactly on one side of the thedaThese

produce linear arrays where clustered vertices appeareithhe beginning

or atthe end of the array. Invoking symmetry, only those withmedallion

at the left will be considered. L&k (n) be the number of such arrays.
Theorem 2.8 provides an expression for the funcgn) and Theorem

2.16 provides a formula fafy(n).

Definition 2.1. Let g(n) be the number of arrangementsrofertices with
k marked points, no two being consecutively marked and itleng sym-
metric pairs.

Example 2.2. A numerical reinterpretation aj(n) is given here. Take for
examplen = 4 andk = 2. From the pair$l2, 13, 14, 23, 24, 34} eliminate
{12, 23, 34} for being consecutive somewhere. This lea{&3 14, 24}.
The pairs are now considered modulo 5, so that 24 is identifigd13 (the
same as 31). The final allowed list{it3, 14} showing thag,(4) = 2.

Theorem 2.3. The functionsk(n) satisfies

k
(2.2) ) = g + ) fice(n—r - 1),
r=2
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Proof. Separate the fierent configurations into two groups: those with no
consecutive marked points and those with at least two cotige®nes that
are marked. The first type is counted ty(n). Observe that if a certain
arrangement has two or more adjacent marked vertices, hieenetnaining
marked ones have no restrictions due to symmetry. In othedsyoeflec-
tion only imposes limitations if the configuration has noaadjnt marked
vertices in it.

The number of possible consecutive marked points is givethéysize
of the medallion. If this size is, with 2 < r < k, then dropr + 1 places
from the configurationr(for the medallion and one more at the right-end
of it). This leaves a total ofi — r + 1 spaces where to plage- r marked
vertices. O

The next step is the enumeration gi{n). This group is divided into
three disjoint subclasses, those with (1) both ends areada(R) both ends
are unmarked and (3) only the left end is marked. In the fi@tcldrop
the vertices at positions, 2, n — 1 andn and observe that the remaining
n — 4 vertices havé — 2 marked ones and no further restrictions. Therefore
there aray_,(n—4) such arrangements. Similarly, the class (2)dés—2)
elements. Finally, in class (3), drop the first two verticed the last one that
is not marked. The remaining— 3 vertices have no symmetry restriction.
The latter are counted biy_;(n-3) = (”;'_‘11) such arrangements. This gives
the relation

n-—k- 1)

(2.3) gangdn—a+gwﬂ“‘”+( k-1

Theorem 2.4.Letn = m+ 2k — 1 and defingy(m) := g«(m+ 2k —1). Then
O satisfies

_ _ _ m+k-2
(2.4) O(M) = Gk—2(M) + g(m—-2) + ( K_ 1 )
Proof. Observe that any valid arrangement countedyk{y) must satisfy
n> 2k —1. The restis elementary. O

The next result was obtained from experimental data gesetiat (2.4).

Example 2.5. The functiongy(m) is computed for < m < 3:

2
and

k
(2.6) @@=ZGW%
j=0

i+2

M_

1l
o



BROKEN BRACELETS 5

Definition 2.6. The relation (2.4) attains a cleaner form by introducing the
necklace binomial cggcients

2.7) (t) . ok(t+k-1) for0< k <t
K/y: 0 otherwise

The next result is a restatement of Theorem 2.4.

Corollary 2.7. The necklace binomial cdiécient satisfies the Pascal-type
relation

t t-2 t-2 t—-2
2. = .
( 8) (k)m (k - Z)m ’ (k - 1) ’ ( k )ﬂt
The evaluation of the necklace binomial @d&ents is now easy to guess

and establish using (2.8).
Theorem 2.8.For 0< k < t, it holds that

t 1 (It() for t even andk odd
(2.9) k.~ 2 (t)+(“/21) elsewhere
n kKt k2l :
Moreover,
t—k+1 K (t—k
(2.10) Bilt) = ( ) )m + rz;‘ (r ] 2).

Table 2 shows the values of the necklacefoents:
(tkjo[1[2]3] 4[5 [ 6 [7][8]9]10]

111

2 11/1|1

311/2] 2|1

4 11124 1] 1

5{1|3/6|6| 3|1

6 1/3/9|100 9 | 3 |1

7 0114112|119| 19|12 | 4 |1

8 11/4|16|28| 38|28 |16|4 |1

9 11/5/20|44| 66 | 66 | 44 20| 5 |1
10/1|5|25(60|110|126/110{60|25/5| 1

A series of elementary consequences of (2.9) are preseax¢d n

Corollary 2.9. The row-sum identity

t
o $([) ~z0e 20
k=0 N

holds.
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The next statements employ tRéonacci numbers | defined by the
relationF, = F,_1 + F,_> with initial conditionsFy = F; = 1 and thd_ucas
numbers L defined by the same recurrence and with initial conditions
2, L, =1.

Corollary 2.10. Let F, andL, as above. Denote:= [t/2] + 2 + (—1)"*1.
Then

212) DB = 5(Ler+ F) -1
k=0

Corollary 2.11. The generating functions

t

t — 1' t } t/2 t mod 2
(2.13) kzz(;(k)myk SL+Y)' + 5L+ Y AL y) 2
214 t t__(1+wWHWH%1_mWHWJ
(2.14) ; K mx B 2(1— X)k+1)/21(1 — x2)Lk+1)/2)
and

t 1 2+ X

2.15 XVK = + ,
(219 t,kzo(k)‘ﬁ Y 2(1-x-y) 2(1-x2-y)
hold.

Corollary 2.12. The necklace binomial cdigcients are symmetric, that is,

t t
210 .=l
forO<k<t.

Corollary 2.13. The functiong is symmetric; that is,
(2.17) O(M) = gm(K).

Proof. This is a restatement of (2.16). An alternative proof of theme-
try (2.17) is obtained from the recurrence (2.4). Simplyresg it in two
different forms

_ _ _ m+k-—2
@1 Em-Gam = am-2+(" 7Y
_ _ _ m+k-2
o(m) - g(m-2) = %40m+( K_ 1 )
The result now follows by induction and the symmetry of thedonial co-
efficients. O

The next theorem provides a combinatorial proof of the sytnyneile
(2.17).
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Theorem 2.14.The symmetngg(m) = gn(K) holds.

Proof. The assertion amounts ¢p(m+ 2k — 1) = gn(k + 2m - 1). Take a
linear array ofn nodes and its 2-coloring (redor whitew). By definition,
ok(n) enumerates all possible ways of coloringodes in red with the rule:
(1) no two reds are consecutive; (2) two such arrays are alguvif they
relate by reflection. According to (1), it must be that thetfirs 1 reds are
each followed by white. Thus, any selectionkafeds can be interpreted as
choosing theK- 1) pairsrw and a free. For each pairw, trim-off thew as
well as its sitting node. That means, whes m+ 2k — 1 then the number
of nodes reduces tm + k and hencey(m+ 2k — 1) induces an equivalent
counting of M + k)-nodes of whichk are red (note: rule (1) is absent but
rule (2) stays). Similarlygn(k + 2m — 1) tantamount to the counting of
(m+k)-nodes of whichm are white. But, it is obvious that colorifgnodes
red on an ifh + k)-array is equivalent to the coloring af nodes in white.
This gives the required bijection. The proof is complete. O

Example 2.15.This example demonstrates the above proofg.ém+ 2k—
1) = gm(k + 2m - 1). Takem = 2 andk = 3. Then,gs(7) andg,(6) count
respectively the cardinality of sets

A = {rWrwrww, rwrwwrw, rwrwwWwr, rwWwWrwrw, rwwrwwr, Wrwrwrwg
and
B : {rwrwww, rwwrww, Wrwrww, rwwWwirw, WErrrw, rwwwwiri.
The setB after color-swapping turns to
By := {wrwrrr, Wrrwrr, rwrwrr, Wrrrwr, rwrrwr, Wrrrrw .

The two set# andB; are now mappeda-trimmed and -trimmed, respec-
tively) to

A = {IITWW, FPWrw, rrwWwr, rwrrw, rwrwr, Wrrrw},

and
B11 := {Wwrrr, Wrwrr, rrwrr, Wrrwr, rwrwr, Wrrrw}.

The bijection betweei; andBy; is clearly exposed,; that is, refleBt;
to get the set

B111 = {rrrww, rrwrw, rrwrr, rwrrw, rwrwr, Wrrrwi.
The full counting solution to the configuration problem isgented next.

Theorem 2.16.The total numbegZ(t) of possible linear configurations of
k diamonds (with or without a medallion) dmodes is given by
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j+1ljft-k-1

=108
Proof. Catalog the diamonds according to whether they are: (1) aalequ
number of clusters; (2) unequal number of clustered diamamdthe two
end-nodes. However many are remaining to be mounted in téean case
(1) is dtected by the reflection but those in case (2) are not. It falltvat
the first case is enumerated by the funciip(t) (equivalently, by necklace

binomials) while the functiorfy(t) is the right choice for the second cate-
gory. The details are omitted. O

20=3(\ 5, %

j=0 j=0

The necklace cdicients are given as Entry A005994 in Neil Sloane
Encyclopedia of Integer Sequences. The reader will fincetirdormation
on the connection betwee(;j)q and the so-callegharaffin numbers The
chemist S. M. Losanitsch studied in [4] the so-caldichne numbergcalled
here the necklace numbers) in his investigation of syme®tmanifested
by rows of paréin (hydrocarbons). In the molecule of atkane (also
known as a paftéin), for n carbon atoms there ar@2 2 hydrogen atoms
(i.e. the formC,Hz,,2). Each carbon ator@ is linked to four other atoms
(eitherC of H); each hydrogen atom is joined to one carbon atom. The
figures in the Appendix show all possible alkane bonds fot h < 5.
There are 11, 1, 2, 3 possible alignments, respectively.

A geometric interpretation. Given a finite grouf, it is a classical prob-
lem to find the generators of the ring of polynomial invarsamtbder the ac-
tion of G. TheMolien series Mz G) is the generating function that counts
the number of linearly independent homogeneous polynenal given
total degreal that are invariants foG. It is given by

1 1 >

Thus, the cofficientsb; record the number of linearly independent polyno-
mials of total degree
Now assumé = 2m— 1. Then (2.14) becomes

ivom-1) . 1 1 1 1
2.20 7=z z .
(2.20) .Z;‘( om-1 )gt 2(1-27 " 2(-A)m

This is recognized as

1 1 1 1 1 1
2.21 = - =)y — =
( ) 2(1-22m " 2(1-22™ |G| ; det(lom — z9)°
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whereG is the symmetric grouf, and the summation runs through the-2
dimensional group representation of the elemeritsGL,,(C). The argu-
ment below shows that the series is indeed a Molien serighdaing of in-
variants under the action &;. More specifically, the ring of invariants un-
der consideration i€[X; Y]2 whereX = (Xy, ..., Xn) andyY = (y1, ..., Ym).
The action is given by, — y; forl = 1,...,n.

Leto be the matrido- = 2 (1) and letr be the tensor produat= o® 1,
resulting in a 2n x 2m matrix which has four blocks of sizax mwith the
off-diagonal blocks being the identity matrix and the diagstébcks being
zero. The matrix group generatedoyn GL,y, is S,. Consequently,

(2.22) detlom — z7°) = det(lon — Z1om) = (1 - 2)*"
and detl,y — z7) = detp ® 1), with p = (_12 _12) Since detp ® B) =

det(d)™det®)™, it must be that detg, — zr) = (1 - 22)™.
These observations are summarized in the next statement.
Theorem 2.17.Consider the action &f, onC[Xy, - -+ , Xm, Y1, - * * » Ym] Qiven

by x = yi. Then, the number of linearly independent invariant polyreds
of total degree is given by the necklace binomial dﬁeient('*zm‘l)m.

2m-1

3. THE NECKLACE POLYNOMIALS

In this section we discuss properties of tiecklace polynomialdefined
by

31) NO) = D (i)
k=0 %N

Theorem 3.1. The necklace polynomial is given by

(3.2) Ni(y) = %(1 + y)t + %(1 + yZ)Lt/ZJ(l + y)t mod 2

Proof. Use the binomial expansion and compare with (2.9). O
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Example 3.2. The first few values oN;(y) are given by

Ni(y) = 1+y

No(y) = L1+y+y

Na(y) = Nu(y)N2(Y)

Niy) = 1+2y+47°%+ 282 +y

Ns(y) = Nu(y)Na(y)

Ne(y) = Na(y)(1+2y+6y* +2y° +y)

NZ(Y) = Ni(y)N2(Y)(1+ 2y +6y° +2y° + )

Ng(y) = 1+4y+16y°+28y° +38y" +28y° + 16y° + 4y’ + 2.
The sequence of necklace polynomials have some intereditirsipility

properties. The results presented below began with therealpobserva-
tion that, fort odd, N;(y) = N1(t)Ni_1(y).

Corollary 3.3. Let j € N andt € N. ThenN;(y) dividesN:1);(y).

Proof. This is a direct consequence of the explicit formula giveiilireo-
rem 3.1. O

Problem 3.4. Prove thai\,i(y) is irreducible.

Many polynomials appearing in Combinatorics ar@modaj that is,
there is an index* such that the cd&cients increase up 1 and decrease
from that point on. A stronger property is thatlo§concavity the polyno-
mial P(x) = Yr_o aX¥ is logconcave i — a a1 > 0for 1<k <n-1.
The reader is referred to [2, 7] for surveys on these issues.

The explicit expression (2.9) gives an elementary proohefriext state-
ment.

Theorem 3.5. The necklace binomial céigcients are unimodal.

Proof. The inequality

t t
(3:3) (k)sjt = (k + 1)9’t
for 0 < k < [t/2] and the symmetry of the necklace binomial fm#ents,
established in Theorem 2.12, give the result. O

Theorem 3.6. The polynomialN(y) is logconcave.
Proof. Use (2.9) and separate cases according to the paritgradk. O

Problem 3.7. Let £{a,} := {aﬁ — an_18n:1} be an operator defined on non-
negative sequences. Therefore, a polynoma(@) is logconcave ift maps
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its codficients into a nonnegative sequence. The polynomial calledk-
logconcave ife(P) is nonnegative for & j < k. A sequence is called
infinitely logconcavéf it is k-logconcave for everit € N.

A recent result of P. Brandén [1] proves that if a polynonitdias only
real and negative zeros, then the sequence of itficeats is infinitely
logconcave. The sequence of binomial ffméents satisfies this property.

The question proposed here is to prove thi&y) is infinitely logconcave.

There is a well-established connection between unimgdgliestions
and the location of the zeros of a polynomial. For exampleglgrmmial
with all its zeros real and negative is logconcave [8]. Thistivated the
computation of the zeros & (y). Figure 4 shows the zeros bfigo(y).

I . . . I . . . I . . . I . . . I . LX)
210 208 ~0.6 04, eeeu2eecect” i

Ficure 4. The zeros of the necklace polynomidiho(y).

Theorem 3.8.Lety = a+ib be a root of the necklace polynomidi(y) = O.
Fora # —1, define the new coordinates= 1/(1 + a) andv = b/(1 + a).
Then (4, V) is on the elliptic curve? = u® — 2u? + 2u - 1.

Proof. Any zero ofN(y) satisfies

(L+y?)2 if tis even

(3.4) (1+ y)t == {(1 + y2)(t—1)/2(1 +Y) if tis odd.

Taking the complex modulus producls+ y|* = |1 + y?°. In terms of
y = a + ib this equation becomes
_a@+a+1)

2 _
(3.5) b = 1+a
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The transformation * a = 1/u andb = v/u leads to equation
(3.6) V=uwr-200+2u-1=Uu-1W-u+1),
as claimed. O

Note 3.9. The collection of points on an elliptic cuné& such as (3.6), has
been the subject of research since the 18th century. Theaewgiation of
such a curve is written as

(3.7) YV +ay = X + apX? + auX + ag

and if x,y € P(C?), the complex projective space, théns a torus. The
addition of this torus is expressed on the cubic in a geom#fdrin: to add
P, andP,, form the line joining them and defiri®& := P, ® P, as the reflec-
tion of the third point of intersection of this line with thelmic curve. This
addition rule is expressed in coordinate form: the genemhfila given in
[6]. Let Py = (X1,Y1) andP; = (Xp,Y,). Define

v it X # X W if g,
1= 98002 if X, = X and v=1 o2 if X, = X
2y1 2 — Al 2v1 2 — Al

TheP3 = (X3, y3) IS given by
X3 = A%+ 2 — X — X andyz = —A%z — v.

Aside from the pointPy = (1, 0), the table below shows a collection of
points on the curv€ obtained using Mathematica. The notation

y=3+2V3, 6= V5-2 1= 24+ 14V3, o = 2+/2(11+5V5),
w1 =2+ V3, wy =23+ V5), wg=3+2V3
is employed.

The notationnecklace pointefers to a pointy, v) on the elliptic curve
€ that is produced by the zeyo= a + ib of a necklace polynomial via the
transformation &+ a = 1/u andb = v/u. The addition of two necklace
points sometimes yields another one. For instaR¢e,P, = Py and 25 :=
P; @ P; = P,. On the other hand, the set of necklace points is not closed
under addition:

PoP; = %(7 +3V5+ 66+ 30\/5_3)—'E (21+ 95 + \/30(29+ 13\/5)).

The minimal polynomial for this number i — 28y” + 1948/ — 5236/° +
4858/* — 39882 + 7156/% — 6040y + 2245. This polynomial does not divide
aN(y) for 1 <t <1000. Itis conjectured that it never does.
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Name u v Root of Ny(y) =0
Py 2 -3 2
P, 2 +3 2
Ps w1 -y w3 —T 6
P, w1 -y —W3+T 6
Ps wi1+y —W3—T 6
P6 w1ty w3+ T 6
P7 (1 + 6)(1)2 wo + 0 4
Pg (1 + 6)(1)2 —(a)z + O') 4
Pg (1 — 5)(,4)2 Wy — O 4
Po |(1-96)wz | —(w2-0) 4

13

TaBLE 1. Some points on the elliptic curée

Note 3.10.Equation (3.5) shows that any root Nf(y) must satisfy—1 <
Rey < 0. Observe thag = 0 is never a root.

Note 3.11.The change of variablas— u + 1 transforms the curvé& into
the formv? = u® + u? + u. This curve appears as @8in Cremona’s table
of elliptic curves, available at

http://www.ma.utexas.edu/users/tornaria/cnt/cremona.html?
conductor=48

The discriminant of the cubic is negative. Therefore thevelras a single
real component. This is seen in Figure 4.

Problem 3.12. The zeros of the polynomia\;(y) are algebraic numbers
lying on the elliptic curve (3.5). The points on that curveatwalgebraic
coordinates form a subgroufi under the addition described above. The
question is to characterize if the set coming from necklace points.

4. NECKALCES AND THEIR PROGENY

This section explores the enumeration of certain specicklaees and
their generating functions. The latter is applied to the potation of some
Molien series. Acircuit graphis a graph consisting of vertices placed on
a circle with some of them colored by red.

Proposition 4.1. The total number of-bead (circular) binary necklaces on
which a red-red string is forbidden is given by

o= 5l

dn

(4.2)

Proof. A standard application of Burnside’s lemma. O
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Example 4.2. Forn = p prime, formula (4.1) gives

(p-1)+L
(4.2) W(p) = Tp
It follows thatL, = 1 modp. Similarly, forn = p?, (4.1) gives
(4.3) PW(p?) = Lz + (P - 1)Lp + p(p - 1).
It follows that
(4.4) Ly = Lp+ 1 modp®.

These are well-known results [3].

A more distinguishing count is provided by definivg(n) to be the
number ofn-bead (circular) binary necklaces on which a red-red string
is forbidden, consisting of exactly red beads. In order to accomodate
the possibility thak = 0, we defineWp(n) := 1 (this is justifiable since
Wo(n) = 7 Zgne(d) = 1) .

Theorem 4.3. The functionW(n) is given by

2 -
(4.5) W(n) = —= D 90(d)( )
dink d
Proof. It follows directly from Burnside’s lemma. O

Corollary 4.4. The identity

Ln/2] 1 g _ IH( 1
(4.6) 2 so(d)( ) =~ ) ¢(@Lua

k
k=0 dink d din
holds.

Proof. The assertion follows from the combinatorial identity

(4.7) D" W) = W(n).

k>0

Theorem 4.5.Forn € N define

d d
(4.8) Vy(X) = (#] + (W} _

Then the row-sum generating function\Wg(n) is given by
Ln/2

4.9) Fa0d == > W)X = % e (g)vd (x79).
k=0 din
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Proof. The proof is based on the identity
Lm/2]

(@10 a9 = 3 M e

k=0
which is easy to verify. This is applied to

& k 1 3 =K\ a
; Wk(n)x Z So(d) Z n-— dk( k )X

din k>0
@ 1 (g - k)xdk
2d 4T
The result follows from here. O
Example 4.6. For p prime, the polynomiaF ,(X), defined in (4.9), is given
by
Lp/2]
1 (p-Kk).«
Fo(X) = —( )x
 p- k\ k
(P21 - V1+4X)P+(1+ V1+4x)P
- p- 2p )

Example 4.7.Putn = 3k + 1 in (4.3) to obtairW(3k + 1) = Tlﬂ(ZKkﬂ)' the
Catalan numbers.

Example 4.8.Forn € N, and withL, denoting the Lucas number,

Ln/2]
1 (n-ky 1

k=0
This is obtained from setting = 1 in (4.9).

Theorem 4.9. The ordinary generating function for the diagonald\g{n)
is given by

1 o(d)x%
n _ j— _—
(4.12) D W)X = kz 0
n>k dik
In its lowest terms, the denominator of this rational fuoictiakes the form
(4.13) [ J@- =] [oa(9,
dik dk

wheredq(X) is thed-th cyclotomic polynomial given in terms of the Mobius
p-function asby(x) = [Tgq(L — xVPX.
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Proof. The result follows from the Taylor series expansion

S 1 (j-m\
(4.14) m(l_x)m_;nj_m( N )x.

O

A geometric interpretation. The above generating functigf,.,c Wk(n)x"
is the Molien seriesV(x; Zy) for the ring of invariantsC[X]* whereX =
(X1, ..., X%)- Inthis case, the groupy is identified with itsk-dimensional
group representation i@L,(C). More concretelyZy = (&) wheree is the
k x k permutation matrix such thafi, j] = 1if j =i+ 1;e[k,1] = 1 and
€i, j] = 0, otherwise. LeRP(d) be the set of positive integers less ththn
and relatively prime tal. Partition the integer intervak] into the disjoint
union

(4.15) K =1L 2. U 5 RA(O).
dik

This relation is reminiscent of the well-known identky= 'y, ¢(d). Then,

W(XZ) = |Zk|Zdet(1k_Xek)

1 ¢(d)
K T det(l - xel/%)

_ ¢(d)
B k % det((ld - xed) ® 1k/d)

_ (d)
Tk dZ“:J det((ly — xeg)/d

¢(d)
- kZ — xd)wd’

d|k
These findings are stated in the next result.

Proposition 4.10. The number of linearly independent homogeneous poly-
nomials, of total degrem, for the ring of invariant<C[ X]* equals

ezl 1)

din,k
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5. A SAMPLE OF THE COMPUTATION OF ZEROS

Motivated by the interesting properties of the zeros of temk polyno-
mials, this section presents some computational graphiowiag the ze-
ros of the polynomials$=,(x). Figure 5 shows the location of the roots of

F100d(X).

-3

Ficure 5. The zeros oF1goo(X).
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The next four figures show a selection of regions from the fsteoroots
of all the polynomials=,(x) for 3 < n < 1000. The caption indicates the
range depicted.

Ficure 8. [-1.4,-0.6] x [-0.5,0.5]. Ficure 9. [-50,5] x [-6, 6].

The interesting structure depicted in figures 6 to 9 will bplered in
future work.

Acknowledgments The authors wish to thank J. Silverman for providing

information on the elliptic curve mentioned in the title. elthird author
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The figures show all possible alkane bonds (fiaraC,Hn.» for n =

1,2 3, 4,5.
H H H H H H
| | | | | |
H—C—H H—C—C—H H—C—C—C—H
| | | | | |
H H H H H H
n=1: CH,. n=2: CyHe. n=3: CzHs.
H
|
H-C-H
H HHH H | H
| | | | | |
H-C-C-C-C-H H-C-C-C-H
| | | | | |
H HHH H H
n=4: C4sHjo.
H H
H-C-H H-C-H
HHHHH H | HH H | H
H-C-C-C-C-C-H H-C-C-C-C-H H-C-C-C-H
HHHHH H  HH Ho| oA
H-C-H
H

n=5: CsHyp.
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