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ABSTRACT. A theoretical prediction for the total width of the positronium
decay in QED has been given by B. Kniehl et al. in the form of an expansion
in Sommerfeld’s fine-structure constant. The coefficients of this expansion
are given in the form of two-dimensional definite integrals, with an integrand
involving the polylogarithm function. We provide here an analytic expression
for the one-loop contribution to this problem.

1. INTRODUCTION

The single-scale problems in multi-loop analytic calculations from quantum field
theories yield interesting classes of integrals. Some examples have appeared in the
recent work by B. Kniehl et al [1] and [2] dealing with the lifetime of one of the two
ground states of the positronium. This is the electromagnetic bound state of the
electron e~ and the positron e®. The main result of [2] is a theoretical prediction
for the total width of positronium decay in QED given by
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where « is Sommerfeld’s fine-structure constant. The leading order term 'y =
2(7? — 9)mal /97, as well as the O (a®?Ina) and O (o In® @) terms are in the
literature (with A, B, C in numerical form only). The remarkable contribution of
[2] is to provide the first analytic expression for the coefficients A and C in (1.1).
An analogous expression for B still remains to be completed. The formulas for A
and C' consist of a formidable collection of terms involving special values of Inz,
the Riemann zeta function ((z), the polylogarithm Li,(z) and the function
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The explicit formulas can be found in [2].
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(1.2) Spp(x) = / In" "¢ InP(1 — tx) dt.
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The one-loop contribution to the width is given as
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(1.3) Iy §(2 — 1 — xo — x3) X [F(x1,23) 4+ -],
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where z;, with 0 < z; < 1, is the normalized energy of the i-th photon and “...
represents F' applied to each of the other five permutations of the variables. The
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evaluation of the integral (1.3) presents considerable analytic difficulties. After
reparametrization, some terms in the function F' involve integrals of the form

(1.4) h(zy, @) = /0(1loiga;;j(1:zr:(fl)ij)y

1 2
loglxy + (1 — 2
Iz, z2) = / glz1 + ( 1)y
o T1xe — (1 —21)(1 —x2)y
The goal of this note is to present an analytic evaluation of the integrals (1.4).
This evaluation includes elementary functions as well as the dilogarithm function

(s = Ooi__ “log(l—1t)
(1.5) LQ()_;kz_ /07dt.
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Remark 1.1. D. Zagier states in [4] that ‘the dilogarithm is one of the simplest
non-elementary functions. It is also one of the strangest. ... Almost all of its
appearances in mathematics, and almost all formulas relating to it, have something
of the fantastical in them, as if this function alone among all others possessed a
sense of humor.’
The following basic relations are due to Euler:
2

Lig(z) + Lia(1—2) = % — log z log(1 — 2),
1
Liy(2) + Lig(—2) = 5Lig(zQ),
2
1
Lis(2) 4+ Lig(1/2) = % ~5 log?(z) — imlog 2.

Information about dilogarithms can be found in [3].
1—
¢ Note that (a*)* =a,and 0 < a < 1if

14+a
and only if 0 < a* < 1. For a € C, the condition |a*| <1 is equivalent to Rea > 0.

The functions

(1.6) ¢(a,b) = Liy (i:‘;)

and

(1.7) ls(a,b) = l(a,b) — £(—a,b) — L(a,—b) + ¢(—a, —b)

are used to give an analytic expression for the integrals I; and Is.

Notation. For a € R, we let a* :=

Theorem 1.1. The positronium integrals are given by

1 1 (- )1 —13) > >
L(—p —) = S22 (logt: log ((t2/t2)*) — La(ty, £2/12)) |
1(115%71%) 21ty (Ogl Og((2/1)) (t1 1/2))

1 1 (-1 —13)

L(—p ——) = “2 T (jog ] logty — L(ty, 1/t)).
2(11&%’1@) oty dostilogts =Lt 1/t2)

Remark 1.2. Kummer’s formula for the dilogarithm [3] is

Lis <M> + Liy (ly> + %long.

y(l —x) 11—z
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A change of variable gives the identity
1
(1.8) ¢(a,b) + (—a,b) + £(a, —b) + £(—a, —b) = £(a® b*) — 3 log?(—b*)

and shows that ¢4(a,b) may be expressed as a sum of three dilogarithms plus ele-
mentary functions.

2. SOME LOGARITHMIC INTEGRALS

The hypergeometric function
k

ar, G, ,ap > (a1)k(a2)k - (ap)k =
21 qu( b1, ba, -+, bg ’Z> - kz_:,o (01)k(b2)ie -+~ (bg)ie K

is now employed to establish the results in this section.

Lemma 2.1. For a # b

_ _ 1 (1 —az) (1 — bx)* LA+pu 1—azx
1—azx)* 11 —bx)* tde = = i — .
/( az)”" (1= bz)"dw = < b—a 2 +1 T —agb
Proof. This is verified by differentiation both sides with respect to x. ([l

Proposition 2.2. For a # b

Yog(1 — az) 17, . 1 . l—a 1-b
/0 1—bx do = b {Lu(l—(l/b)L12 (1—@/1))IOg(la)IOg(l—b/aﬂ7
Y log(1 — a2x?) 1 . X " 2
/0 de = 5 [¢s(a,a/b) + log a* log((b/a)*) — log b* log(1 — a®)] .

Proof. Lemma 2.1 yields

A1 o)A _
/(1 ax) dp = 1(1—ax) JF, 1,A ; 1—ax .
1—bzx A b—a A+1'1—a/b

Observe that

d 1, 2 2N+ 1L A+1
2.2 ~,F z) = ——4F 2.
(22) dX® 1(/\+1’Z> 1+ A)2° 2<A+2,)\+2’Z)

Differentiating with respect to A leads to

(1—ax)*t l(l—a:z:))‘ 1 LA 1—ax
/log(l az)il—bx dx_/\ib—a log(1 — ax) 3 oy A+ 1 T afb +

1—ax I 2 +1L,A+1 1—ax
1T—a/m)A+ 22"\ A+2,A+2 1T—a/b )|

Now set A =1 and use Li;(z) = —log(1 — z), as well as

(23) B (2;)2;)2;z> =~ llog(1 - 2) + Lia(:)

to establish the first claim. The factorization (1 —a?2?) = (1 —ax)(1+ax) and the

partial fraction decomposition
2 1 1
24 =
(2:4) 1 — b222 1—bx+1+bx

give the second evaluation. (I
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3. A TRIGONOMETRIC INTEGRAL

The results in Section 2 provide the value of an interesting trigonometric integral
in terms of Legendre’s yo function

1, . .
(3.1) x2(a) == 5 (Liz(a) — Liz(—a)) .
Proposition 3.1. For a € R
1+ 22

Proof. Observe that
d [* tan~!(az)dz /°° rdx
b (

> tan~? 1 1
(3.2) / tan” (az) dx = x2(a) + 3 logaloga™ + zfs(a,i/b).
b

da J, 1+ 22 1+ a222)(1 + 22)
1 272 2
= 51— a) (log(1 + a®b*) — 2log a — log(1 + b%)) .
The original integral is recovered via
¢ ds 1 l+a 1
3.3 — =1 — _Zloga*
(3:3) /0 1-s2 2Og<1—a> g B0
as well as
% 2log sds ) . .
(3.4) -2 = Liz(1 — a) — Lig(1) 4+ Liz(—a) + log a log(1 + a).
0 —

The last term to evaluate

“ log(1 + s2b? log(1 + a?b?x?
(3.5) /Mdsza/ log(1 + a”b"2%)
0 0

1—s2 1— a?x? *
is given by Proposition 2.2 as

1
(3.6) B [€,(iab, ib) 4 log((iab)*) log(—(ib)*) — log(a*) log(1 + a®b%)] .

The result now follows from Euler’s transformations for the dilogarithm given after
Remark 1.1. O

Letting b — 0 produces the integral over the half-line.

Corollary 3.2. The evaluation

* tan~!(ax) dx 1 .
(37) /O W = XQ(CL) + 5 logalog(a )

holds.
4. APPLICATION TO THE POSITRONIUM DECAY INTEGRALS
For the convenience of the reader we reproduce Theorem 1.1:

Theorem 4.1. The positronium integrals are given by

I (1—@1_@) - (log t} log ((t2/13)*) — £s(t1, 13 /t2))

1 1 (1—12)(1—t3)
L|—— —— ) = " 2 (logt* logti — ly(t1,1/ts)).
2(1—15%’1—@) 21 ts (log] logt; = £ (t1, 1/12))
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Proof. The integral I (z1, z2) is written as

—t2 1 1 ! 1 —t3y? dy
(4'1) 172 1211(12712>:/10g<12 1— 2,,2°
( t1)( t2) 51 53 0 (51 (t2/t1) Yy

Proposition 2.2 yields

/110 (17??1/2) dy B /1 log(1 — #1y%) /1 log(1—#)
o P\ T=2 ) 1= (ta/tr)?s? o 1= (/)22 VT )y 1= (ta/t)2? @

t
5r; llos 1 log((t2/1)°) = Lo(t1, 13/12)]

The second positronium integral is evaluated analogously. ]

The following special case is recorded.

Corollary 4.2. Assume 0 < a < 1. Then

! 1 —a)a? 1-—
(4.2) / og(a+( 5 a)z’) dx = —arctan® 2.
0 -z a
Proof. Let a=1/(1 —t?). Then
1 2
1 1-
ogla+ (1 —a)z) dr = a(l—-a)l(a,a)
1—a?
0
1 * *
= log"log((1/8)") — £,(¢,0)]
It follows from Remark 1.1 that
2 1—t 1+t 1, ,
4. = ——Lis | — ) —Li =—1 * +imlogt®.
@3 =T L (M) i (H) Llog? ¢ + i log
Thus
Ylog(a + (1 — a)z?) 1 2
44 dx = | = logt*
(4.4 [ O e (Gour)
and this is (4.2). O
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