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Abstract. A theoretical prediction for the total width of the positronium

decay in QED has been given by B. Kniehl et al. in the form of an expansion
in Sommerfeld’s fine-structure constant. The coefficients of this expansion

are given in the form of two-dimensional definite integrals, with an integrand

involving the polylogarithm function. We provide here an analytic expression
for the one-loop contribution to this problem.

1. Introduction

The single-scale problems in multi-loop analytic calculations from quantum field
theories yield interesting classes of integrals. Some examples have appeared in the
recent work by B. Kniehl et al [1] and [2] dealing with the lifetime of one of the two
ground states of the positronium. This is the electromagnetic bound state of the
electron e− and the positron e+. The main result of [2] is a theoretical prediction
for the total width of positronium decay in QED given by

(1.1) Γ(theory) = Γ0

[
1 +

Aα

π
+

1
3
α2 lnα+B

(α
π

)2

− 3α3 ln2 α

2π
+
Cα3 lnα

π

]
,

where α is Sommerfeld’s fine-structure constant. The leading order term Γ0 =
2(π2 − 9)mα6/9π, as well as the O

(
α2 lnα

)
and O

(
α3 ln2 α

)
terms are in the

literature (with A, B, C in numerical form only). The remarkable contribution of
[2] is to provide the first analytic expression for the coefficients A and C in (1.1).
An analogous expression for B still remains to be completed. The formulas for A
and C consist of a formidable collection of terms involving special values of lnx,
the Riemann zeta function ζ(x), the polylogarithm Lin(x) and the function

(1.2) Sn,p(x) =
(−1)n+p−1

(n− 1)! p!

∫ 1

0

lnn−1 t lnp(1− tx) dt.

The explicit formulas can be found in [2].

The one-loop contribution to the width is given as

(1.3) Γ1 =
mα7

36π2

∫ 1

0

dx1

x1

dx2

x2

dx3

x3
δ(2− x1 − x2 − x3)× [F (x1, x3) + · · · ] ,

where xi, with 0 ≤ xi ≤ 1, is the normalized energy of the i-th photon and “. . .”
represents F applied to each of the other five permutations of the variables. The
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evaluation of the integral (1.3) presents considerable analytic difficulties. After
reparametrization, some terms in the function F involve integrals of the form

I1(x1, x2) =
∫ 1

0

log[x1 + (1− x1)y2]
(1− x1)x2 − x1(1− x2)y2

dy(1.4)

I2(x1, x2) =
∫ 1

0

log[x1 + (1− x1)y2]
x1x2 − (1− x1)(1− x2)y2

dy.

The goal of this note is to present an analytic evaluation of the integrals (1.4).
This evaluation includes elementary functions as well as the dilogarithm function

(1.5) Li2(z) =
∞∑
k=1

zk

k2
= −

∫ z

0

log(1− t)
t

dt.

Remark 1.1. D. Zagier states in [4] that ‘the dilogarithm is one of the simplest
non-elementary functions. It is also one of the strangest. . . . Almost all of its
appearances in mathematics, and almost all formulas relating to it, have something
of the fantastical in them, as if this function alone among all others possessed a
sense of humor.’

The following basic relations are due to Euler:

Li2(z) + Li2(1− z) =
π2

6
− log z log(1− z),

Li2(z) + Li2(−z) =
1
2

Li2(z2),

Li2(z) + Li2(1/z) =
π2

3
− 1

2
log2(z)− iπ log z.

Information about dilogarithms can be found in [3].

Notation. For a ∈ R, we let a∗ :=
1− a
1 + a

. Note that (a∗)∗ = a, and 0 < a < 1 if

and only if 0 < a∗ < 1. For a ∈ C, the condition |a∗| ≤ 1 is equivalent to Re a > 0.
The functions

(1.6) `(a, b) = Li2

(
1− a
1− b

)
and

(1.7) `s(a, b) = `(a, b)− `(−a, b)− `(a,−b) + `(−a,−b)
are used to give an analytic expression for the integrals I1 and I2.

Theorem 1.1. The positronium integrals are given by

I1

(
1

1− t21
,

1
1− t22

)
= − (1− t21)(1− t22)

2t1t2

(
log t∗1 log

(
(t2/t21)∗

)
− `s(t1, t21/t2)

)
,

I2

(
1

1− t21
,

1
1− t22

)
=

(1− t21)(1− t22)
2t1t2

(log t∗1 log t∗2 − `s(t1, 1/t2)) .

Remark 1.2. Kummer’s formula for the dilogarithm [3] is

Li2

(
x(1− y)2

y(1− x)2

)
= Li2

(
x(1− y)
x− 1

)
+ Li2

(
1− y

y(x− 1)

)
+ Li2

(
x(1− y)
y(1− x)

)
+ Li2

(
1− y
1− x

)
+

1
2

log2 y.
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A change of variable gives the identity

(1.8) `(a, b) + `(−a, b) + `(a,−b) + `(−a,−b) = `(a2, b2)− 1
2

log2(−b∗)

and shows that `s(a, b) may be expressed as a sum of three dilogarithms plus ele-
mentary functions.

2. Some logarithmic integrals

The hypergeometric function

(2.1) pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

; z
)

:=
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

zk

k!
.

is now employed to establish the results in this section.

Lemma 2.1. For a 6= b∫
(1− ax)λ−1(1− bx)µ−1dx =

1
λ

(1− ax)λ(1− bx)µ

b− a 2F1

(
1, λ+ µ

λ+ 1
;

1− ax
1− a/b

)
.

Proof. This is verified by differentiation both sides with respect to x. �

Proposition 2.2. For a 6= b∫ 1

0

log(1− ax)
1− bx

dx =
1
b

[
Li2

(
1

1− a/b

)
− Li2

(
1− a

1− a/b

)
− log(1− a) log

(
1− b

1− b/a

)]
,∫ 1

0

log(1− a2x2)
1− b2x2

dx =
1
2b
[
`s(a, a/b) + log a∗ log((b/a)∗)− log b∗ log(1− a2)

]
.

Proof. Lemma 2.1 yields∫
(1− ax)λ−1

1− bx
dx =

1
λ

(1− ax)λ

b− a 2F1

(
1, λ
λ+ 1

;
1− ax
1− a/b

)
.

Observe that

(2.2)
d

dλ
2F1

(
1, λ
λ+ 1

; z
)

=
z

(1 + λ)2 3F2

(
2, λ+ 1, λ+ 1
λ+ 2, λ+ 2

; z
)
.

Differentiating with respect to λ leads to∫
log(1− ax)

(1− ax)λ−1

1− bx
dx =

1
λ

(1− ax)λ

b− a

[(
log(1− ax)− 1

λ

)
2F1

(
1, λ
λ+ 1

;
1− ax
1− a/b

)
+

1− ax
(1− a/b)(1 + λ)2 3F2

(
2, λ+ 1, λ+ 1
λ+ 2, λ+ 2

;
1− ax
1− a/b

)]
.

Now set λ = 1 and use Li1(z) = − log(1− z), as well as

(2.3) 3F2

(
2, 2, 2
3, 3

; z

)
= − 4

z2
[log(1− z) + Li2(z)]

to establish the first claim. The factorization (1−a2x2) = (1−ax)(1 +ax) and the
partial fraction decomposition

(2.4)
2

1− b2x2
=

1
1− bx

+
1

1 + bx

give the second evaluation. �
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3. A trigonometric integral

The results in Section 2 provide the value of an interesting trigonometric integral
in terms of Legendre’s χ2 function

(3.1) χ2(a) :=
1
2

(Li2(a)− Li2(−a)) .

Proposition 3.1. For a ∈ R

(3.2)
∫ ∞
b

tan−1(ax)
1 + x2

dx = χ2(a) +
1
2

log a log a∗ +
1
4
`s(a, i/b).

Proof. Observe that

d

da

∫ ∞
b

tan−1(ax) dx
1 + x2

=
∫ ∞
b

x dx

(1 + a2x2)(1 + x2)

=
1

2(1− a2)
(
log(1 + a2b2)− 2 log a− log(1 + b2)

)
.

The original integral is recovered via

(3.3)
∫ a

0

ds

1− s2
=

1
2

log
(

1 + a

1− a

)
= −1

2
log a∗,

as well as

(3.4)
∫ a

0

2 log s ds
1− s2

= Li2(1− a)− Li2(1) + Li2(−a) + log a log(1 + a).

The last term to evaluate

(3.5)
∫ a

0

log(1 + s2b2)
1− s2

ds = a

∫ 1

0

log(1 + a2b2x2)
1− a2x2

dx,

is given by Proposition 2.2 as

(3.6)
1
2
[
`s(iab, ib) + log((iab)∗) log(−(ib)∗)− log(a∗) log(1 + a2b2)

]
.

The result now follows from Euler’s transformations for the dilogarithm given after
Remark 1.1. �

Letting b→ 0 produces the integral over the half-line.

Corollary 3.2. The evaluation

(3.7)
∫ ∞

0

tan−1(ax) dx
1 + x2

= χ2(a) +
1
2

log a log(a∗).

holds.

4. Application to the positronium decay integrals

For the convenience of the reader we reproduce Theorem 1.1:

Theorem 4.1. The positronium integrals are given by

I1

(
1

1− t21
,

1
1− t22

)
= − (1− t21)(1− t22)

2t1t2

(
log t∗1 log

(
(t2/t21)∗

)
− `s(t1, t21/t2)

)
,

I2

(
1

1− t21
,

1
1− t22

)
=

(1− t21)(1− t22)
2t1t2

(log t∗1 log t∗2 − `s(t1, 1/t2)) .
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Proof. The integral I1(x1, x2) is written as

(4.1)
−t21

(1− t21)(1− t22)
I1

(
1

1− t21
,

1
1− t22

)
=
∫ 1

0

log
(

1− t21y2

1− t21

)
dy

1− (t2/t1)2y2
.

Proposition 2.2 yields∫ 1

0

log
(

1− t21y2

1− t21

)
dy

1− (t2/t1)2y2
=

∫ 1

0

log(1− t21y2)
1− (t2/t1)2y2

dy −
∫ 1

0

log(1− t21)
1− (t2/t1)2y2

dy

=
t1
2t2

[
log t∗1 log((t2/t21)∗)− `s(t1, t21/t2)

]
.

The second positronium integral is evaluated analogously. �

The following special case is recorded.

Corollary 4.2. Assume 0 < a < 1. Then

(4.2)
∫ 1

0

log(a+ (1− a)x2)
1− x2

dx = −arctan2

(√
1− a
a

)
.

Proof. Let a = 1/(1− t2). Then∫ 1

0

log(a+ (1− a)x2)
1− x2

dx = a(1− a)I1(a, a)

=
1
2

[log t∗ log((1/t)∗)− `s(t, t)] .

It follows from Remark 1.1 that

(4.3) `s(t, t) =
π2

3
− Li2

(
1− t
1 + t

)
− Li2

(
1 + t

1− t

)
=

1
2

log2 t∗ + iπ log t∗.

Thus

(4.4)
∫ 1

0

log(a+ (1− a)x2)
1− x2

dx =
(

1
2

log t∗
)2

and this is (4.2). �
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