RAMANUJAN MASTER THEOREM APPLIED TO THE
EVALUATION OF FEYNMAN DIAGRAMS

IVAN GONZALEZ, VICTOR H. MOLL, AND IVAN SCHMIDT

ABSTRACT. Ramanujan Master Theorem is a technique developed by S. Ra-
manujan to evaluate a class of definite integrals. This technique is used here
to produce the values of integrals associated with Feynman diagrams.

1. INTRODUCTION

Precise experimental measurements in high energy physics require, in its theoret-
ical counterpart, the development of new techniques for the evaluation of analytic
objects associated with the corresponding Feynman diagrams. These techniques
have lately emphasized the automatization of calculations of multiscale, multiloop
diagrams.

Modern numerical methods for the evaluation of Feynman diagrams benefit from
analytical tecniques employed as preliminary work to detect the presence of diver-
gences. Recent advances include a method based on the Bernstein-Tkachov theorem
for the corrections of one and two loop diagrams and methods based on sector-
decompositions. New analytic methods to reduce Feynman diagrams to a small
number of scalar integrals include integration by parts, the use of Lorenz invari-
ance and other symmetries, Mellin-Barnes transforms and differential equations.
The reader is referred to [9] for a description of these and other methods for the
evaluation of Feynman diagrams and to [10, 11] for readable introductions to the
topic.

This paper contains examples of an alternative method for the evaluation of
some Feynman diagrams. It is based on the classical Ramanujan Master Theorem
(RMT), one of his favorite techniques to evaluate definite integrals. The theoretical
aspects of this method are presented in [7] and a collection of examples and some
justification of the algorithm is given in [1, 3, 4]. This technique has also been
used in [5] for the evaluation of some multidimensional integrals obtained by the
Schwinger parametrization of Feynman diagrams.

The goal of the present work is to illustrate the flexibility of the method by eval-
uating integrals associated to two and three loop diagrams. Naturally the method
works for a large variety of definite integrals and the first example illustrates this
by computing the Mellin transform of a Bessel function. Further applications will
be described in future work. Progress had been made in the automatization of the
rules that control this method [8].
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2. RAMANUJAN’S MASTER THEOREM (RMT) AND ITS GENERALIZATION
2.1. The formalism. The Mellin transform
(2.1) M= [ 2 ) do
0

may be evaluated by one of Ramanujan’s favorite tools; the so-called Ramanujan
Master Theorem. It states that if f(z) admits a series expansion of the form

22) s =Y e 2
in a neighborhood of x = 0, with f(0) = ¢(0) # 0, then

(2.3) /000 27 f(x) de = T(v)p(—v).

The term p(—v) appearing in (2.3) requires an extension of the function ¢, initially
defined only for v € N. Details on the natural unique extension of ¢ are given in
[1]. The condition ¢(0) # 0 guarantees the convergence of the integral near z = 0,
when v > 0. The proof of Ramanujan Master Theorem and the precise conditions
for its application appear in [7].

2.2. The Mellin transform of a Bessel function. The first example computes
an integral involving the Bessel function, with hypergeometric representation

with

(2.5) oF) (a x) = 2( n%
and

(2.6) (@)n = F(I‘f(:)”)

is the Pochhammer symbol. The integral evaluated here

(2.7) I= /000 2?1 (V) do

is expressed as

28 I = /OOO””" <¢2§)ar(11+a)i(_nl!)n(lja)nﬁdw

n=0

* 5 D" 1 n+(B+g)-1
_ 2 dx.
/0 Z ! {2@‘*‘2"1“(1—1—04—1—71)]3: v

n=0

In the notation of (2.2)

1
2. = .
(2:9) #(n) = 5ovm T(1+a+n)
Therefore

1—‘ *

(2.10) I= (n")

20420 (14+ o — n*)’
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Here n* = — (8 + &), is the solution of

(2.11) n+p+35 =0
Therefore
(2.12) /OO 1, (V) do = 22/31“(5—;:%).

This is entry 6.561.14 in the table of integrals [6].

2.3. A second example: the Feynman diagram of a bubble. This is the
evaluation a D-dimensional integral corresponding to the massless bubble Feynman
diagram. The result is well-known [2]. In momentum space the corresponding
integral is given by

(2.13) G = / ,”TD/2 [(p q)2:|

where the parameters {a;} are arbitrary. The Schwinger representation® corre-
sponding to this diagram produces

D
az A7 q,

Ty
D exp | — D
2 % 1 a 1 T+ Yy
(2.14) G= 17y %2 = dx dy.
T a)T (a2) (w+0)?
In order to apply RMT in iterative form, each term of the integrand is expanded
in a Taylor series. In situations where options are available, the optimal course of
action seems to be to minimize the number of expansions. This is a heuristic rule
and its justification is an open question. In this example, it is convenient to expand
first the exponential function

LY o - (=D" o\ ay"

2.15 exp [ ——2 p?) = it
(2.15) xp< x—i—yp) > S 0
to produce
(2.16)

yf oy

G=x / / zh Tyl )" da dy.
I'(a1)T (a Z (x+y)%+"
The next step is to expand (z + y)~P/2~" by the binomial theorem
917 T S DA —D/2-n—k, k
(2.17) (z +y) => o (F4n),e y
k=0

and replace in (2.16) to obtain

_D
2

= k n “ nta, AT dy
6= XX S G ) (B, e e

k=0n=0 Yy

IThere is a canonical procedure to associate to each Feynman diagram a multi-dimensional
integral. For details, the reader is referred to [9, chapter 3|, under the name alpha parameters.
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Th change of variables x — 1/x produces the alternative expression

00 co 0 00 \n o 1k 2\ " —a D nad$d
T [ D O (B ), sy

! ! X
0 k=0n=0 Y

There are several options to employ RMT to evaluate this integral. Option a)
evaluates first the integral in the z-variable using the expansion in the index k:

bz
The value of the integral obtained by this procedure is denoted by G,. The other
two options, labeled G}, and G., are produced by replacing the pair (z, k) by (y, k)

and (y,n), respectively. It is shown here that each of these options produces the
same result.

k
(_lj) dx.

Solution with option (a). In this case, G is given by

B (_1)*% 00 Oodi o] (_1)k xkfal % @
@19 G i | l/o S AU

where ¢(k) is

(2.19) = i

Ramanujan Master Theorem now gives

3

+ TL) k+n-+as )

(-1 /°° dy . D
Gazi (k") (—k™) —=, with k¥ = — —a;.
@)D Jy PR 2
Thus
D
( )= / S (_1)n o\ (D tar-Dyndy
@ — D 2_ - al—r+az 5 n "
G = TlapTia) P27 Z A PR y
NG I (a1 +n) pd
2 n ai _D y
_ D 2_4a / p2 yn+a1+a2
e 22 - y
The last integral is now evaluated using RMT to obtain
D
(-1) = D * oy—n* I'(a1 —n")
Go==——""—"—"—-T(5—a1)l —_—
Fa)Fag) (2~ N0 ) w0

with n* :al—i—ag—%.

Therefore, option (a) gives the value of G as

_ Dyl _ D _
(2.20) G, = (_1)—§ (p2)%*a1fa2 T(a1 4+ a2 — )T(F —a)T (3 az).
F(al)F(ag)F (.D —ay — CLQ)

Solution with option (b). A similar argument now yields

Gy = )

> (=1)* ntay | dy dx
I‘(a1 / [/ z:;) %l ‘P(k) yk+ + 5?7
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with .
o)=Y L 02)" (2 4m), atotE,
Therefore h

The change of variables z — 1/x now gives

Nis}

Gy = (=

D E P E (Y Tt (B o) L, pde
S T, 2 0 o

n! r (% + n) x
and RMT produces the final result as

D
2

( 2)g_a2_a1 F(% —a)T (% — Clg) T(as +ay — %)

P T(a)T (a)T (D —az —ay)
Observe that G, = Gp. A similar calculation shows that this is also the value of

G.. All choices of indices lead to the same value for the integral G.

221)  Gy=(-1)"

3. SOME MULTILOOP CALCULATIONS

This section uses RMT for the evaluation of two multidimensional integrals of
the form

o) oo
(3.1) 1= / .’1711471 / .%'UNNil f(.%'17...7.’17N)d.’171 t 'dl‘N.
0 0

As in the one-dimensional case, the function f is assumed to admit a Taylor ex-
pansion

00 o] I _ In
f(SCl,...,l‘N> = Z Z (_1') ( 1) @(ll,...,lN)

l In!
=0 Iny=0 1 N

% ztib11l1+.~-+a1NlN+b1 xtjlvN1l1+-~+aNNlN+bN

)

so that I is expressed as

oo 0o X o (_1)11 (-1 In

L=0 In=0 N

aili+..4aiNin+by an1hi+...4+annIn+bn dxy . dxn
. N

X ] T
T N
Applying RMT in iterative form gives
1
3.2 I = ——F—T(=17)..I'(-I} [
( ) |det(A)\ ( 1) ( N)@(l? 7N)
where A = (a;;) and I* = (If,--- ,1}) is the solution of the linear system Al* = —b.

Details of the proof of this result appear in [1].
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Example 3.1. Massive sunset diagram. The first example is associated to the
diagram shown in Figure 1. In the momentum space, the integral is given by

._ 1 1 dPq1 dP g
(3.3) €= / [¢? — M2]*™ [(‘h - qz)g]az [(p+ q2)?]*® inP/2 iz D/2
M
0
p
0

FicURE 1. The sunset diagram

In terms of the Schwinger parametrization, G becomes

T1X2X
exp le )exp( 17273

2
_ p >
G / / / T1%2 + 9613?3;- TaT3 a7
I (a1 ag CL3 2

(172 + T123 + T23) 2

where d 7 = xtT 11‘32 1x§3 Ydxy dxs dzs.
The evaluation is described here only? in special case p?> = M?2. The general case
is only algebraically more complicated. The integral reduces to

[ 22 (w9 + 13) 2}
G / / / r1 (22 4 23) + I2$3D a7
F(al a2 a3 1‘1 ZEQ +£ZJ3) +I2$3]
The expansion of the exponential function yields

2 s -1 n1 n 2n1 ni
exp <x1 ({Zfl (I’Q + 1’3) M2> _ Z ( ) (7M2) 1 xq (1‘2 +SC3)

To + T3) + Tox3 = nq! [z1 (z2 + x3) + Tox3)™
so that
(3.4)

rL1 2n1 ni
a= S
(a1 (a2) T (a3) =0 [21 (@2 4 x3) + 12x3]7+"1
The binomial theorem
= —a+n) ,_

3.5 (x+ ¢y
(3.5) y)* ;O =) y

2This special case is of phyiscal interest.
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gives

_1)’”2 I (% + ny + 7742) xfgfnlfnrz (

o
1 -y
D B D
[x1 (z2 + 3) + 2213] 2 m na=0 na! r (5 + ”1)

D
T TN o ano

x2+l‘3) 5 x3?,

and (3.4) becomes

e w0 poo oo L (Lpym(Lyym
¢ = r(aor(az)r(as)/o / / 2. 2 e ()

n1=0n9=0

I‘(g—f—nl —|—n2) ni—2 _n, _D_
—n2 ) TR T e (e )T 2 "2 4
F(g+n1) 1 2 43 ( 2 3)

The final expansion

—n2 — i (_1)”3 P (% + n2 + n?’) 7%77127”333”3

D
3.6 To +x3) 2 T
( ) ( 2 3) ng! F(%+n2) 2 3

ns =0

expresses the integral in the form required for the application of RMT. This gives

(3.7)
“= L
0 0 0

y Z Z Z (_nll)!nl (_1)n2 (_l)ng al_%+n1_n2ma2—§—n3xg3+n2+n3

T
7”L2! 713! 1 2

nle na =0 ns =0

% (-)~" L (§ +m+n) L (5 +n+ns) (_M2)”1 dzy dzs dzs

[(a1)T (az2)T(az) T (L +m) L'(2+ny) Ty a9 T3
Therefore

(3:8) D D D
=1 <a1>(ra2)r (o) TR0 : (rQ(ng;)%) : (1"2(371_2713;3) ()™
where the indices {n}} are given by the unique solution to the linear system

ny—ng = a3 — D/2,

ny = —as+ D/2,

ng +ng = as,
associated to (3.7). The solutions are
(3.9) ni =ay+az+as—D,ny=as+az—D/2,n; =D/2— as.

The value of the integral G is finally given by
_D F(a1 +a2+a3—D)F(a2—|—a3— %)F(% —CLQ)
I'(a1)T (a2) T (as)

I'(2—a3)T (2D — a1 — 2as — 2a3)

F(%—al—ag—ag)F(D—ag—ag)

G = (-1)
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Example 3.2. Massless three loops ladder diagram. The last example eval-
uates the integral® associated to the diagram seen in figure 2

b T1T4T7T10
-1 -5 [e%s} oo eXp | —————
(3.10) G = ¥/ / ( U )d7.
I‘(al)I‘ (am) 0 0 Uz

R 2

3 6 9
1 4 7 10

2 5 8

R R

FI1GURE 2. The 3-loop ladder

10
Here d 7 = H dx; x?"_l and U is a polynomial given by
j=1

U=uwx5(x7+ 1) (f2 +24) + 26 (27 + 1) (o + 24) + 24 (27 + 1) o + 27 (f2 + 24) f1,
with

(3.11) fi = a3 +x9 + 210 and f5 = x1 + 25 + 3.

Expanding the exponential term yields

3D (e%e] n ny .ni N n
=) /OO /OO (=17, =y war ayg
312) G=——2 [ .. m a7,
( ) F(al)--T(alo) 0 0 Z TL1! U%"‘"l

n1=0

and expanding U by the multinomial theorem

a ) oo (_1)n1 (_1)nk71 I‘(—a—f—nl—i—...—i—nk,l)
(@14 Fmeor o) = Z Z ny! T mg_q! ['(—a)
n1=0 ngp—1=0
X oyt T T
gives
o oo 0o n n n D
v = % (=)™ (=)™ (=)™ T (F +n1 + 12+ ng +n4)
0 a0 nae0 115! ns! o F(%_,’_nl)
no=Unz=0Ung=

D
2

— 5 —Nn]1—N2—N3—"n —D_p—
> f1 1 2 3 4f2"2 (x7+fl>n2+n3+n4 (.’L‘4 —|—f2) 3 —n1—n2

ng, N3, N4

D
2—nj—nzs—nz—n
X zylatiagte, 2 0 T

L7

3n a simplified physical situation, where the conditions PZ.2 =0for1 <i<4ands=0are
imposed
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9
Similarly,
($7 + fl)ﬂ2+n3+n4 — i (_l)nS I (—nz — N3 —nNg + n5)mn5fn2+n3+n4 ns
0 n5! F(—ng —n3 —TL4) [ ’

(x4 + f2)_%—”1—n2 = Z )™ F( +ntne +n6)

ngf —ni1—n2—ne
ng=0 (2 +n1 +TL2)
and
frEmIme Z Z " (=)™ T (5 + 01+ ns + ng + ns)
1 - D
ny=0mng=0 ' F(§+n1+n5>
X xgwxgsxlo[) ni—ms—nr— ns,
f_%_m_n6 = i i )™ (_1)nmr(%+”1+”6+”9+”10)
? ~onzo nio! L' (L +ny +ng)

D
—3 Tn1—ne—Ng—MNio
X 1‘711933;“01‘3 2 ,

finally produce

3D
2

_1_3 1”10
R i oy AR D SR D e SR

|
ny =0 nio= 0 10 :

a —n1—ng—ng—nio
% x<111+n1+n9x32+n10x3 2 :L.Z4+n1+n2+n6xg5+n3xg5+n4
ar—2—n>—na—nitns_astng_ agtns, a10—F—ns—ng—ns A1 dz19
X .’1}'7 xs ‘Tg xlO gy T
Z1 Z10

with the notation

T(2 +ny+ng+ng+ng) T (—ng —ng — (L
Sﬁ(nl,...,nlo): (2 1 2 3 4) ( No — N3 n4+n5) (

5+n1+n2+n6)
T'(2+n) I'(—nz —n3 —n4) T (% +n1+n2)
5 F(%#—m+n5+n7+”8)F(%+”1+”6+"9+”10)tm
I'(L+ny +ns5) T (L +ny +ng) .

A direct application of RMT gives

(3.13) G = cn* ! (—ni, -y =17 )ﬁF( 7)
. - T (ay)---T (a1p) |det (A)] LA R j=1 "

where {n}} are solutions to the linear system
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1 0 0 0 0 0 0 0 1 0 nj aq
0 0 0 0 0 0 0 0 0 1 nsy as
-1 0 0 0 0 -1 0 0 -1 -1 n; az— 2
1 1 0 0 0 1 0 0 0 0 ny ay
0 0 1 0 0 0 0 0 0 0 ng . as
0 0 0 1 0 0 0 0 0 0 ng a ag
o -1 -1 -1 1 0 0 0 0 0 n} ar— 2
0 0 0 0 0 0 1 0 0 0 ng as
0 0 0 0 0 0 0 1 0 0 ng ag
o 0 0 0 -1 0 -1 -1 0 0 n%o ajo— 2
given by
nf=—32 4+ a; +ay+as+as+ a5+ ag + ar + as + ag + ayo,
ny =D — a5 —ag — ar — ag — ag — aio,
ny = as,
ny = dg,
x D
(3.14) n5 =3 = as —dg — d,
ng =45 — a1 —az —ag,
ny = as,
ngzag,
ng =32 —ay — a3 — ay — a5 — ag — a7y — ag — ag — ayo,
ni, = asg.

This gives the value of the diagram as

ap I’ (5 —as0,10) T (5 — a123) T (22 — azsase7s0,10) I (22 — a123456780)
I'(a1)T (a4) T (a7) T (a10) T (2D — a123456789.10)

T (a123456789,10 — 22) T' (D — as6789,10) I (D — a123456) T (2 — a7) T (£ — a4)

I'(D — ars9,10) T (D — a1234) T (32 — a1234567) T (22 — ause7s,10)
X t%_a123456789,10,

with the notation
(3.15) Qjjk... = Qi +a; +ag + ...
An important special case, when all powers a; of propagators are 1, is

Lap D0 2)T (3 -3)° T (3 -9)°'T(D-6°T (8 —1)" o

10
T (2D —10)T (D — 4)°T (32 —7)* '

G=(-1)

4. CONCLUSIONS

This paper presents a technique for the evaluation of a large variety of intergrals
coming from Feynman diagrams. The advantage over previous methods is that the
evaluation is reduced to series expansions of the integrand coupled with the solution
of a linear system of equations.
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