
A REMARKABLE SEQUENCE OF INTEGERS

VICTOR H. MOLL AND DANTE V. MANNA

Abstract. A survey of properties of a sequence of coefficients appearing in
the evaluation of a quartic definite integral is presented. These properties are
of analytical, combinatorial and number-theoretical nature.

1. A quartic integral

The problem of explicit evaluation of definite integrals has been greatly simplified
due to the advances in symbolic languages like Mathematica and Maple. Some years
ago the first author described in [26] how he got interested in these topics and the
appearance of the sequence of rational numbers

(1.1) dl,m = 2−2m
m
∑

k=l

2k

(

2m− 2k

m− k

)(

m+ k

m

)(

k

l

)

,

for 0 ≤ l ≤ m. These are rational numbers with a simple denominator. The
numbers 22mdl,m are the remarkable integers in the title. These rational coefficients
dl,m appeared in the evaluation of the quartic integral

(1.2) N0,4(a;m) :=

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
,

for a > −1, m ∈ N. The formula

(1.3) N0,4(a;m) =
π

2

Pm(a)

[2(a+ 1)]m+
1
2

,

with

(1.4) Pm(a) =
m
∑

l=0

dl,ma
l

has been established by a variety of methods, some of which are reviewed in [4].
The symbolic status of (1.2) has not changed much since we last reported on [26].
Mathematica 6.0 is unable to compute it when a and m are entered as parameters.
On the other hand, the corresponding indefinite integral is evaluated in terms of
the Appell-F1 function defined by

(1.5) F1(a; b1, b2; c;x, y) :=
∞
∑

m=0

∞
∑

n=0

(a)m+n(b1)m(b2)n

m!n!(c)m+n
xmyn
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as
∫

dx

(x4 + 2ax2 + 1)m+1
= xF1

[

1

2
, 1 +m, 1 +m,

3

2
,− x2

a+
,
x2

−a−

]

,

where a± := a ±
√
−1 + a2. Here (a)k = a(a + 1) · · · (a + k − 1) is the ascending

factorial.
The coefficients {dl,m : 0 ≤ l ≤ m} have remarkable properties that will be

discussed here. Those properties have mainly been discovered by following the
methodology of Experimental Mathematics, as presented in [11, 12]. Many of the
properties presented here have been guessed using a symbolic language and subse-
quently established by traditional methods. The reader will find in [8] a detailed
introduction to the polynomial Pm(a) in (1.4).

2. A triple sum expression for dl,m

Our first approach to the evaluation of (1.3) was a byproduct of a new proof of
Wallis’s formula,

J2,m :=

∫ ∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(

2m

m

)

,(2.1)

where m is a nonnegative integer. Wallis’ formula has the equivalent form

(2.2)
π

2
=

2

1
· 2

3
· 4

3
· 4

5
· · · 2n

2n− 1
· 2n

2n+ 1
· · · .

The reader will find in [8] a proof of the equivalence of these two formulations.
We describe in [9] our first proof of (2.1). Section 3 shows that a simple exten-

sion leads naturally to the concept of rational Landen transformations. These are
transformations on the coefficients of a rational integrand that preserve the value
of the integral. It is the rational analog of the well known transformation

(2.3) a 7→ a+ b

2
, b 7→

√
ab

that preserves the elliptic integral

(2.4) G(a, b) =

∫ π/2

0

dθ
√

a2 cos2 θ + b2 sin2 θ
.

The reader will find in [13] and [24] details about these topics.
The proof of Wallis’ formula begins with the change of variables x = tan θ. This

converts J2,m to its trigonometric form

J2,m =

∫ π/2

0

cos2m θ dθ =
π

22m+1

(

2m

m

)

.(2.5)

The usual elementary proof of (2.5) presented in textbooks is to produce a recur-
rence for J2,m. Writing cos2 θ = 1 − sin2 θ and using integration by parts yields

J2,m =
2m− 1

2m
J2,m−1.(2.6)

Now verify that the right side of (2.5) satisfies the same recursion and that both
sides give π/2 for m = 0.
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A second elementary proof of Wallis’s formula, also given in [9], is done using a
simple double-angle trick:

J2,m =

∫ π/2

0

cos2m θ dθ =

∫ π/2

0

(

1 + cos 2θ

2

)m

dθ.

Now introduce the change of variables ψ = 2θ, expand and simplify the result by
observing that the odd powers of cosine integrate to zero. Hence (2.5) is reduced
to an inductive proof of the binomial recurrence

J2,m = 2−m

⌊m/2⌋
∑

i=0

(

m

2i

)

J2,i.(2.7)

Note that J2,m is uniquely determined by (2.7) along with the initial value J2,0 =
π/2. Thus (2.5) now follows from the identity

f(m) :=

⌊m/2⌋
∑

i=0

2−2i

(

m

2i

)(

2i

i

)

= 2−m

(

2m

m

)

(2.8)

since (2.8) can be written as

J2,m = 2−m

⌊m/2⌋
∑

i=0

(

m

2i

)

J2,i,

where

J2,i =
π

22i+1

(

2i

i

)

.

The last step is to verify the identity (2.8). This can be done mechanically using
the theory developed by Wilf and Zeilberger, which is explained in [27, 28]. The
sum in (2.8) is the example used in [28] (page 113) to illustrate their method.

Note. The WZ-method is an algorithm in Computational Algebra that, among
other things, will produce for a hypergeometric/holonomic sum, such as (3.7), a
recurrence like (3.10). The reader will find in [27] and [28] information about this
algorithm.

The command

ct(binomial(m, 2i) binomial(2i, i)2−2i, 1, i,m,N)

produces

f(m+ 1) =
2m+ 1

m+ 1
f(m),(2.9)

a recursion satisfied by the sum. One completes the proof by verifying that 2−m
(

2m
m

)

satisfies the same recursion. Note that (2.6) and (2.9) are equivalent since J2,m and
f(m) differ only by a factor of π/2m+1.

We have seen that Wallis’s formula can be proven by an angle-doubling trick
followed by a hypergeometric sum evaluation. Perhaps the most interesting appli-
cation of the double-angle trick is in the theory of rational Landen transformations.
See [24] for an overview.
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Now we employ the same ideas in the evaluation of (1.3). The change of variables
x = tan θ yields

N0,4(a;m) =

∫ π/2

0

(

cos4 θ

sin4 θ + 2a sin2 θ cos2 θ + cos4 θ

)m+1

× dθ

cos2 θ
.

Observe first that the denominator of the trigonometric function in the integrand
is a polynomial in u = 2θ. In detail,

sin4 θ + 2a sin2 θ cos2 θ + cos4 θ = 2
[

(1 + a) + (1 − a) cos2 u
]

.

In terms of the double-angle u = 2θ, the original integral becomes

N0,4(a;m) = 2−(m+1)

∫ π

0

(

(1 + cosu)2

(1 + a) + (1 − a) cos2 u

)m+1

× du

1 + cosu
.

Next, expand the binomial (1 + cosu)2m+1 and check that

(2.10)

∫ π

0

[

(1 + a) + (1 − a) cos2 u
]−(m+1)

cosj u du = 0

for j odd. The vanishing of half of the terms in the binomial expansion turns out to
be a crucial property. The remaining integrals, those with j even, can be simplified
by using the double-angle trick one more time. The result is

N0,4(a;m) =

m
∑

j=0

2−j

(

2m+ 1

2j

)
∫ π

0

[(3 + a) + (1 − a) cos v]
−(m+1)

(1 + cos v)j dv,

where v = 2u and we have used the symmetry of cosine about v = π to reduce
the integrals form [0, 2π] to [0, π]. The familiar change of variables z = tan(v/2)
produces (1.3) with the complicated formula

dl,m =

l
∑

j=0

m−l
∑

s=0

m
∑

k=s+l

(−1)k−l−s

23k

(

2k

k

)(

2m+ 1

2s+ 2j

)(

m− s− j

m− k

)(

s+ j

j

)(

k − s− j

l − j

)

.

Note. In spite of its complexity, obtaining this expression was the first step in the
mathematical road described in this paper. It was precisely what Kauers and Paule
[20] required to clarify some combinatorial properties of dl,m. Some arithmetical
properties can be read directly from it. For example, we can see that dl,m is a
rational number and that 23mdl,m ∈ Z; that is, its denominator is a power of 2
bounded above by 3m. Improvements on this bound are outlined in Section 3.

3. A single sum expression for dl,m

The idea of doubling the angle that proved productive in Section 2 can be ex-
pressed in the realm of rational functions via the change of variables

(3.1) y = R2(x) :=
x2 − 1

2x
.

The inverse has two branches

(3.2) x = y ±
√

y2 + 1,

where the plus sign is valid for x ∈ (0, +∞) and the other one on (−∞, 0). The
rational function R2 arises from the identity

(3.3) cot 2θ = R2(cot θ).



AN INTERESTING FAMILY 5

This change of variables gives the proof of the next theorem.

Theorem 3.1. Let f be a rational function and assume that the integral of f over
R is finite. Then

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞

[

f(y +
√

y2 + 1) + f(y −
√

y2 + 1)
]

dy +(3.4)

+

∫ ∞

−∞

[

f(y +
√

y2 + 1) − f(y −
√

y2 + 1)
] y dy
√

y2 + 1
.

Moreover, if f is an even rational function, the identity (3.4) remains valid if one
replaces each interval of integration by R+.

Theorem 3.2. For m ∈ N, let

(3.5) Q(x) =
1

(x4 + 2ax2 + 1)m+1
.

Define

Q1(y) :=
[

Q(y +
√

y2 + 1) +Q(y −
√

y2 + 1)
]

+

+
y

√

y2 + 1

[

Q(y +
√

y2 + 1) −Q(y −
√

y2 + 1)
]

.

Then

(3.6) Q1(y) =
Tm(2y)

2m(1 + a+ 2y2)m+1
,

where

(3.7) Tm(y) =

m
∑

k=0

(

m+ k

m− k

)

y2k.

Proof. Introduce the variable φ = y +
√

y2 + 1. Then y −
√

y2 + 1 = −φ−1 and
y = 1

2 (φ− φ−1). Moreover,

Q1(y) =
[

Q(φ) +Q(φ−1)
]

+
φ2 − 1

φ2 + 1

(

Q(φ) −Q(φ−1)
)

=
2

φ2 + 1

[

φ2Q(φ) +Q(φ−1)
]

:= Sm(φ).

The result of the theorem is therefore equivalent to

(3.8) 2m
(

1 + a+ 1
2 (φ− φ−1)2)

)m+1
Sm(φ) = Tm(φ− φ−1).

A direct simplification of the left hand side of (3.8) shows that this identity is
equivalent to proving

(3.9)
φ2m+1 + φ−(2m+1)

φ+ φ−1
= Tm(φ− φ−1).

To establish this, one simply checks that both sides of (3.9) satisfy the second
order recurrence

(3.10) cm+2 − (φ2 + φ−2)cm+1 + cm = 0,
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and the values for m = 0 and m = 1 match. This is straight-forward for the
expression on the left hand side, while the WZ-method settles the right hand side.

�

We now prove (1.3). The identity in Theorem 3.1 shows that

(3.11)

∫ ∞

0

Q(x) dx =

∫ ∞

0

Q1(y) dy,

and this last integral can be evaluated in elementary terms. Indeed,
∫ ∞

0

Q1(y) dy =

∫ ∞

0

Tm(2y) dy

2m(1 + 2y2)m+1

=
1

2m

m
∑

k=0

(

m+ k

m− k

)
∫ ∞

0

(2y)2k dy

(1 + a+ 2y2)m+1
.

The change of variables y = t
√

1 + a/
√

2 gives

∫ ∞

0

Q1(y) dy =
1

[2(1 + a)]m+1/2

m
∑

k=0

(

m+ k

m− k

)

2k(1 + a)k

∫ ∞

0

t2k dt

(1 + t2)m+1
,

and the elementary identity

∫ ∞

0

t2k dt

(1 + t2)m+1
=

π

22m+1

(

2k

k

)(

2m− 2k

m− k

)(

m

k

)−1

gives

∫ ∞

0

Q1(y) dy =
π

22m+1

1

[2(1 + a)]m+1/2

m
∑

k=0

(

m+ k

m− k

)

2k

(

2k

k

)(

2m− 2k

m− k

)(

m

k

)−1

(1+a)k.

This can be simplified further using

(3.12)

(

m+ k

m− k

)(

2k

k

)

=

(

m+ k

m

)(

m

k

)

and the equality (3.11) to produce

(3.13)

∫ ∞

0

Q(y) dy =
π

22m+1

1

[2(1 + a)]m+1/2

m
∑

k=0

2k

(

m+ k

m

)(

2m− 2k

m− k

)

(1 + a)k.

This completes the proof of (1.3). The coefficients dl,m are given by

(3.14) dl,m = 2−2m
m
∑

k=l

2k

(

2m− 2k

m− k

)(

m+ k

m

)(

k

l

)

.

This is clearly an improvement over the expression for dl,m given in the previous
section.

We now see that dl,m is a positive rational number. The bound on the denomi-
nator is now improved to 2m− 1. This comes directly from (3.14) and the familiar

fact that the central binomial coefficients
(

2m
m

)

are even.
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4. A finite sum

The previous two sections have provided two expressions for the polynomial
Pm(a). The elementary evaluation in Section 2 gives

Pm(a) =

m
∑

j=0

(

2m+ 1

2j

)

(a+ 1)j

m−j
∑

k=0

(

m− j

k

)(

2(m− k)

m− k

)

2−3(m−k)(a− 1)m−k−j

(4.1)

and the results described in Section 3 provide the alternative expression

Pm(a) = 2−m
m
∑

k=0

2−k

(

2k

k

)(

2m− k

m

)

(a+ 1)m−k.(4.2)

The reader will find details in [9]. Comparing the values at a = 1 given by both
expressions leads to

(4.3)

m
∑

k=0

2−2k

(

2k

k

)(

2m+ 1

2k

)

=

m
∑

k=0

2−2k

(

2k

k

)(

2m− k

m

)

.

The identity (4.3) can be verified using D. Zeilberger’s package EKHAD [28]. In-
deed, EKHAD tells us that both sides of (4.3) satisfy the recursion

(2m+ 3)(2m+ 2)f(m+ 1) = (4m+ 5)(4m+ 3)f(m).

To conclude the proof by recursion, we check that they agree at m = 1. A symbolic
evaluation of both sides of (4.3) leads to

(4.4)
22m+1Γ(2m+ 3/2)√

π Γ(2m+ 2)
= − 22m+1 √π

Γ(−2m− 1/2)Γ(2m+ 2)
.

The identity (4.3) now follows from

(4.5) Γ(m+ 1
2 ) =

√
π

22m

(2m)!

m!
for m ∈ N.

An elementary proof of (4.3) would be desirable.

The left hand sum admits a combinatorial interpretation: multiply by 22m+1 to
produce

(4.6) S1(m) :=
m
∑

j=0

(

2m+ 1

2j

)(

2j

j

)

22m+1−2j .

Consider the set X of all paths in the plane that start at (0, 0) and take 2m + 1
steps in any of the four compass directions (N = (0, 1), S = (0,−1), E = (1, 0) and
W = (−1, 0)) so that the path ends on the y-axis. Clearly there must be the same
number of E′s and W ′s, say j of them. Then to produce one of these paths, choose
which is E and which is W in

(

2j
j

)

ways. Finally, choose the remaining 2m+1− 2j

steps to be either N or S, in 22m+1−2j ways. This shows that the set X has S1(m)
elements.

Now let Y be the set of all paths of the x-axis that start and end at 0, take steps
e = 1 and w = −1, and have length 4m+2. The cardinality of Y is clearly

(

4m+2
2m+1

)

.
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There is a simple bijection between the sets X and Y given by E → ee, W →
ww,N → ew, S → we. Therefore,

(4.7) S1(m) =

(

4m+ 2

2m+ 1

)

.

We have been unable to produce a combinatorial proof for the right hand side
of (4.3).

5. A related family of polynomials

The expression (3.14) provides an efficient formula for the evaluation of dl,m

when l is close to m. For example,

(5.1) dm,m = 2−m

(

2m

m

)

and dm−1,m = (2m+ 1)2−(m+1)

(

2m

m

)

.

Our attempt to produce a similar formula for small l led us into a surprising family
of polynomials.

The original idea is very simple: start with

(5.2) Pm(a) =
2

π
[2(a+ 1)]m+

1
2

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
,

and compute dl,m as coming from the Taylor expansion at a = 0 of the right hand
side. This yields

(5.3) dl,m =
1

l!m!2m+l

(

αl(m)

m
∏

k=1

(4k − 1) − βl(m)

m
∏

k=1

(4k + 1)

)

,

where αl and βl are polynomial in m of degrees l and l−1, respectively. The explicit
expressions

(5.4) αl(m) =

⌊l/2⌋
∑

t=0

(

l

2t

) m+t
∏

ν=m+1

(4ν − 1)

m
∏

ν=m−l+2t+1

(2ν + 1)

t−1
∏

ν=1

(4ν + 1),

and

(5.5) βl(m) =

⌊(l+1)/2⌋
∑

t=1

(

l

2t− 1

) m+t−1
∏

ν=m+1

(4ν + 1)

m
∏

ν=m−l+2t

(2ν + 1)

t−1
∏

ν=1

(4ν − 1),

are given in [10].

Trying to obtain more information about αl and βl directly from (5.4, 5.5) proved
difficult. One uninspired day, we decided to compute their roots numerically. We
were pleasantly surprised to discover the following property.

Theorem 5.1. For all l ≥ 1, all the roots of αl(m) = 0 lie on the line Rem = − 1
2 .

Similarly, the roots of βl(m) = 0 for l ≥ 2 lie on the same vertical line.

The proof of this theorem, due to J. Little [23], starts by writing

(5.6) Al(s) := αl((s− 1)/2) and Bl(s) := βl((s− 1)/2)
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and proving that Al is equal to l! times the coefficient of ul in f(s, u)g(s, u), where
f(s, u) = (1 + 2u)s/2 and g(s, u) is the hypergeometric series

(5.7) g(s, u) = 2F1

(

s

2
+

1

4
,
1

4
;
1

2
; 4u2

)

.

A similar expression is obtained for Bl(s). From here it follows that Al and Bl each
satisfy the three-term recurrence

(5.8) xl+1(s) = 2sxl(s) − (s2 − (2l − 1)2)xl−1(s).

Little then establishes a version of Sturm’s theorem to prove the final result.

The location of the zeros of αl(m) now suggest to study the behavior of this
family as l → ∞. In the best of all worlds, one will obtain an analytic function of
m with all the zeros on a vertical line. Perhaps some Number Theory will enter
and ... one never knows.

6. Arithmetical properties

The expression (5.3) gives

(6.1) m!2m+1 d1,m = (2m+ 1)

m
∏

k=1

(4k − 1) −
m
∏

k=1

(4k + 1),

from where it follows that the right hand side is an even number. This led naturally
to the problem of determining the 2-adic valuation of

Al,m := l!m!2m+ldl,m = αl(m)
m
∏

k=1

(4k − 1) − βl(m)
m
∏

k=1

(4k + 1)(6.2)

=
l!m!

2m−l

m
∑

k=l

2k

(

2m− 2k

m− k

)(

m+ k

k

)(

k

l

)

.(6.3)

Recall that, for x ∈ N, the 2-adic valuation ν2(x) is the highest power of 2 that
divides x. This is extended to x = a/b ∈ Q via ν2(x) = ν2(a)− ν2(b), leaving ν2(0)
as undefined. It follows from (6.3) that

(6.4) Am,m = 2m(2m)! and Am−1,m = 2m−1(2m− 1)!(2m+ 1),

so these 2-adic valuations can be computed directly from Legendre’s classical for-
mula

(6.5) ν2(x) = x− s2(x),

where s2(x) counts the number of 1’s in the binary expansion of x.
At the other end of the l-axis,

(6.6) A0,m =

m
∏

k=1

(4k − 1)

is clearly odd, so ν2(A0,m) = 0. The first interesting case is l = 1:

(6.7) A1,m = (2m+ 1)
m
∏

k=1

(4k − 1) −
m
∏

k=1

(4k + 1).

The main result of [10] is that

(6.8) ν2(Al,m) = ν2(m(m+ 1)) + 1.
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This was extended in [2].

Theorem 6.1. The 2-adic valuation of Al,m satisfies

(6.9) ν2(Al,m) = ν2((m+ 1 − l)2l) + l,

where (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol for k ≥ 1. For
k = 0, we define (a)0 = 1.

The proof is an elementary application of the WZ-method. Define the numbers

Bl,m :=
Al,m

2l(m+ 1 − l)2l
,(6.10)

and use the WZ-method to obtain the recurrence

Bl−1,m = (2m+ 1)Bl,m − (m− l)(m+ l + 1)Bl+1,m, 1 ≤ l ≤ m− 1.

Since the initial values Bm,m = 1 and Bm−1,m = 2m+ 1 are odd, it follows induc-
tively that Bl,m is an odd integer. The reader will also find in [2] a WZ-free proof
of the theorem.

Note. The reader will find in [3] a study of the 2-adic valuation of the Stirling
numbers. This study was motivated by the results described in this section. The
papers [15, 16, 22, 21, 33, 34] contain information about 2-adic valuations of related
sequences.

7. The combinatorics of the valuations

The sequence of valuations {ν2(Al,m) : m ≥ l} increase in complexity with l.
Some of the combinatorial nature of this sequence is described next. The first
feature of this sequence is that it has a block structure, reminiscent of the simple
functions of Real Analysis.

Definition 7.1. Let s ∈ N, s ≥ 2. We say that a sequence {aj : j ∈ N} has block
structure if there is an s ∈ N such that each t ∈ {0, 1, 2, · · · }, we have

(7.1) ast+1 = ast+2 = · · · = as(t+1).

The sequence is called s-simple if s is the largest value for which (7.1) occurs.

Theorem 7.2. For each l ≥ 1, the set X(l) := {ν2(Al,m) : m ≥ l } is an s-simple

sequence, with s = 21+ν2(l).

We now provide a combinatorial interpretation for X(l). This requires the maps

F ({a1, a2, a3, · · · }) := {a1, a1, a2, a3, · · · },
T ({a1, a2, a3, · · · }) := {a1, a3, a5, a7, · · · }.

We will also employ the notation c := {ν2(m) : m ≥ 1} = {0, 1, 0, 2, 0, 1, · · · }.
We describe an algorithm that reduces the sequence X(l) to a constant sequence.

The algorithm starts with the sequenceX(l) := {ν2(Al,l+m−1) : m ≥ 1 } and then
finds and n ∈ N so that X(l) is is 2n-simple. Define Y (l) := T n (X(l)). At the
initial stage, Theorem 7.2 ensures that n = 1 + ν2(l). The next step is to introduce
the shift Z(l) := Y (l)− c and finally define W (l) := F (Z(l)). If W (l) is a constant
sequence, then STOP; otherwise repeat the process with W instead of X . Define
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Xk(l) as the new sequence at the end of the (k − 1)th cycle of this process, with
X1(l) = X(l).

This algorithm produces a sequence of integers nj, so that Xk(l) is 2nk -simple.
The integer vector Ω(l) :=

{

n1, n2, n3, · · · , nω(l)

}

is called the reduction sequence
of l. The number ωl is the number of cycles requires to obtain a constant sequence.

Definition 7.3. Let l ∈ N. The composition of l, denoted by Ω1(l), is an integer
sequence defined as follows: Write l in binary form. Read the digits from right
to left. The first part of Ω1(l) is the number of digits up to and including the
first 1 read in the corresponding binary sequence; the second one is the number of
additional digits up to and including the second 1 read, and so on until the number
has been read completely.

Theorem 7.4. Let {k1, · · · , kn : 0 ≤ k1 < k2 < · · · < kn}, be the unique collection
of distinct nonnegative integers such that l =

∑n
i=1 2ki . Then the reduction sequence

Ω(l) of l is {k1 + 1, k2 − k1, · · · , kn − kn−1}.
It follows that the reduction sequence Ω(l) is precisely the sequence of compo-

sitions of l, that is, Ω(l) = Ω1(l). This is the combinatorial interpretation of the
algorithm used to reduce X(l) to a constant sequence.

8. Valuation patterns encoded in binary trees

In this section we describe the precise structure of the graph of the sequence
{ν2(Al,m),m ≥ l}. The reader is referred to [30] for complete details. In view
of the block structure described in the previous section, it suffices to consider the
sequences {ν2(Cl,m),m ≥ l}, which are defined by

Cl,m =

The emerging patterns are still very complicated. For instance, Figure 1 shows the
case l = 13 and Figure 2 corresponds to l = 59. The remarkable fact is that in
spite of the complexity of ν2(Cl,m) there is an exact formula for it. The rest of this
section describes how to find it.

Figure 1. The valuation ν2(C13,m)

We describe now the decision tree associated to the index l. Start with a root v0
at level k = 0. To this vertex we attach the sequence {ν2(Cl,m) : m ≥ 1} and ask
whether ν2(Cl,m) − ν2(m) has a constant value independent of m. If the answer is
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Figure 2. The valuation ν2(C59,m)

yes, we say that v0 is a terminal vertex and label it with this constant. The tree is
complete. If the answer is negative, we split the integers modulo 2 and produce two
new vertices, v1, v2, connected to v0 and attach to the classes {ν2(Cl,2m−1) : m ≥ 1}
and {ν2(Cl,2m) : m ≥ 1} to these vertices. We now ask whether ν2(Cl,2m−1)−ν2(m)
is independent of m and the same for ν2(Cl,2m) − ν2(m). Each vertex that yields
a positive answer is considered terminal and the corresponding constant value is
attached to it. Every vertex with a negative answer produces two new ones at the
next level.

Assume the vertex v corresponding to the sequence {2k(m − 1) + a : m ≥ 1}
produces a negative answer. Then it splits in the next generation into two vertices
corresponding to the sequences {2k+1(m−1)+a : m ≥ 1} and {2k+1(m−1)+2k+a :
m ≥ 1}. For instance, in Figure 3, the vertex corresponding to {4m : m ≥ 1}, that
is not terminal, splits into {8m : m ≥ 1} and {8m− 4 : m ≥ 1}. These two edges
lead to terminal vertices. Theorem 8.1 shows that this process ends in a finite
number of steps.

root

2m 2m−1

4m 4m−2 4m−3

8m 13

4m−1

14
8m−4 13

16 16

Figure 3. The decision tree for l = 5

Theorem 8.1. Let l ∈ N and T (l) be its decision tree. Define k∗(l) := ⌊log2 l⌋.
Then
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1) T (l) depends only on the odd part of l; that is, for r ∈ N, we have T (l) = T (2rl),
up to the labels.

2) The generations of the tree are labelled starting at 0; that is, the root is genera-
tion 0. Then, for 0 ≤ k ≤ k∗(l), the k-th generation of T (l) has 2k vertices. Up to
that point, T (l) is a complete binary tree.

3) The k∗-th generation contains 2k∗+1 − l terminal vertices. The constants asso-
ciated with these vertices are given by the following algorithm. Define

(8.1) j1(l, k, a) := −l+ 2(1 + 2k − a),

and

(8.2) γ1(l, k, a) = l + k + 1 + ν2 ((j1 + l − 1)!) + ν2 ((l − j1)!) .

Then, for 1 ≤ a ≤ 2k∗+1 − l, we have

(8.3) ν2
(

Cl,2k(m−1)+a

)

= ν2(m) + γ1(l, k, a).

Thus, the vertices at the k∗-th generation have constants given by γ1(l, k, a).

4) The remaining terminal vertices of the tree T (l) appear in the next generation.
There are 2(l−2k∗(l)) of them. The constants attached to these vertices are defined
as follows: let

(8.4) j2(l, k, a) := −l+ 2(1 + 2k+1 − a),

and

(8.5) j3(l, k, a) := j2(l, k, a+ 2k).

Define

(8.6) γ2(l, k, a) := l + k + 2 + ν2 ((j2 + l− 1)!) + ν2 ((l − j2)!) ,

and

(8.7) γ3(l, k, a) := l + k + 2 + ν2 ((j3 + l− 1)!) + ν2 ((l − j3)!) .

Then, for 2k∗(l)+1 − l + 1 ≤ a ≤ 2k∗(l), we have

(8.8) ν2
(

Cl,2k∗(l)+1(m−1)+a

)

= ν2(m) + γ2(l, k
∗(l), a),

and

(8.9) ν2
(

Cl,2k∗(l)+1(m−1)+a+2k∗(l)

)

= ν2(m) + γ3(l, k
∗(l), a),

give the constants attached to these remaining terminal vertices.

We now use the theorem to produce a formula for ν2(C3,m). The value k∗(3) = 1
shows that the first level contains 21+1 − 3 = 1 terminal vertex. This corresponds
to the sequence 2m− 1 and has constant value 7, thus,

(8.10) ν2 (C3,2m−1) = 7.

The next level has 2(3 − 21) = 2 terminal vertices. These correspond to the se-
quences 4m and 4m−2, with constant values 9 for both of them. This tree produces

(8.11) ν2 (C3,m) =











7 + ν2
(

m+1
2

)

if m ≡ 1 mod 2,

9 + ν2
(

m
4

)

if m ≡ 0 mod 4,

9 + ν2
(

m+2
4

)

if m ≡ 2 mod 4.
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The complexity of the graph for l = 13 is reflected in the analytic formula for
this valuation. The theorem yields

(8.12) ν2 (C13,m) =











































































































36 + ν2
(

m+7
8

)

if m ≡ 1 mod 8,

37 + ν2
(

m+6
8

)

if m ≡ 2 mod 8,

36 + ν2
(

m+5
8

)

if m ≡ 3 mod 8,

40 + ν2
(

m+12
16

)

if m ≡ 4 mod 16,

38 + ν2
(

m+11
16

)

if m ≡ 5 mod 16,

39 + ν2
(

m+10
16

)

if m ≡ 6 mod 16,

38 + ν2
(

m+9
16

)

if m ≡ 7 mod 16,

40 + ν2
(

m+8
16

)

if m ≡ 8 mod 16,

40 + ν2
(

m+4
16

)

if m ≡ 12 mod 16,

38 + ν2
(

m+3
16

)

if m ≡ 13 mod 16,

39 + ν2
(

m+2
16

)

if m ≡ 14 mod 16,

38 + ν2
(

m+1
16

)

if m ≡ 15 mod 16,

40 + ν2
(

m
16

)

if m ≡ 16 mod 16.

The details for Theorem 8.1 are given in [30].

Note. The p-adic valuations of Al,m for p odd present phenomena different from
those explained for the case p = 2. Figure 4 shows the plot of ν17(A1,m) where we
observe linear growth. Experimental data suggest that, for any odd prime p, one
has

(8.13) νp(Al,m) ∼ m

p− 1
.

Figure 5 depicts the error term ν17(A1,m) − m/16. The structure of the error
remains to be explored.

50 100 150 200 250

5

10

15

Figure 4. The valuation ν17(A1,m)

9. Unimodality and log-concavity

A finite sequence of real numbers {a0, a1, · · · , am} is said to be unimodal if there
exists an index 0 ≤ j ≤ m such that a0 ≤ a1 ≤ · · · ≤ aj and aj ≥ aj+1 ≥ · · · ≥ am.
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-0.5

0.5

1.0

1.5

Figure 5. The error term ν17(A1,m) −m/16

A polynomial is said to be unimodal if its sequence of coefficients is unimodal. The
sequence {a0, a1, · · · , am} with aj ≥ 0 is said to be logarithmically concave (or log-
concave for short) if aj+1aj−1 ≤ a2

j for 1 ≤ j ≤ m − 1. It is easy to see that if a
sequence is log-concave then it is unimodal [36].

Unimodal polynomials arise often in combinatorics, geometry, and algebra, and
have been the subject of considerable research in recent years. The reader is referred
to [29] and [14] for surveys of the diverse techniques employed to prove that specific
families of polynomials are unimodal.

For m ∈ N, the sequence {dl,m : 0 ≤ l ≤ m} is unimodal. This is a consequence
of the following criterion established in [6].

Theorem 9.1. Let ak be a nondecreasing sequence of positive numbers and let
A(x) =

∑m
k=0 akx

k. Then A(x + 1) is unimodal.

We applied this theorem to the polynomial

(9.1) A(x) := 2−2m
m
∑

k=0

2k

(

2m− 2k

m− k

)(

m+ k

m

)

xk

that satisfies Pm(x) = A(x + 1). The criterion was extended in [1] to include the
shifts A(x+j) and in [32] for arbitrary shifts. The original proof of the unimodality
of Pm(a) can be found in [7].

In [26] we conjectured the log-concavity of {dl,m : 0 ≤ l ≤ m}. This turned out
a more difficult question. Here we describe some of our failed attempts.

1) A result of Brenti [14] states that if A(x) is log-concave then so is A(x + 1).
Unfortunately this does not apply in our case since (9.1) is not log-concave. Indeed,

24m−2k
(

a2
k − ak−1ak+1

)

=

(

2m

m− k

)2(
m+ k

m

)2

×

×
(

1 − k(m− k)(2m− 2k + 1)(m+ k + 1)

(k + 1)(m+ k)(2m− 2k − 1)(m− k + 1)

)

and this last factor could be negative—for example, for m = 5 and j = 4. The num-
ber of negative terms in this sequence is small, so perhaps there is a way out of this.
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2) The coefficients dl,m satisfy many recurrences. For example,

(9.2) dj+1(m) =
2m+ 1

j + 1
dj(m) − (m+ j)(m+ 1 − j)

j(j + 1)
dj−1(m).

This can be found by a direct application of WZ method. Therefore, dl,m is log-
concave provided

(9.3) j(2m+ 1)dj−1(m)dj(m) ≤ (m+ j)(m+ 1 − j)dj−1(m)2 + j(j + 1)dj(m)2.

We have conjectured that the smallest value of the expression

(9.4) (m+ j)(m+ 1 − j)dj−1(m)2 + j(j + 1)dj(m)2 − j(2m+ 1)dj−1(m)dj(m)

is 22mm(m+ 1)
(

2m
m

)2
and it occurs at j = m. This would imply the log-concavity

of {dl,m : 0 ≤ l ≤ m}. Unfortunately, it has not yet been proven.

Actually we have conjectured that the dl,m satisfy a stronger version of log-
concavity. Given a sequence {aj} of positive numbers, define a map

L ({aj}) := {bj}
by bj := a2

j − aj−1aj+1. Thus {aj} is log-concave if {bj} has positive coefficients.

The nonnegative sequence {aj} is called infinitely log-concave if any number of ap-
plications of L produces a nonnegative sequence.

Conjecture 9.2. For each fixed m ∈ N, the sequence {dl,m : 0 ≤ l ≤ m} is
infinitely log-concave.

The log-concavity of {dl,m : 0 ≤ l ≤ m} has recently been established by M.
Kauers and P. Paule [20] as an applications of their work on establishing inequalities
by automatic means. The starting point is the triple sum expression in Section 2
written as

dl,m =
∑

j,s,k

(−1)k+j−l

23(k+s)

(

2m+ 1

2s

)(

m− s

k

)(

2(k + s)

k + s

)(

s

j

)(

k

l − j

)

.

Using the RISC package Multisum [35] they derive the recurrence

(9.5) 2(m+ 1)dl,m+1 = 2(l+m)dl−1,m + (2l + 4m+ 3)dl,m.

The positivity of dl,m follows directly from here. To establish the log-concavity of
dl,m the new recurrence

4l(l+ 1)dl+1,m = −2(2l− 4m− 3)(l+m+ 1)dl,m + 4(l −m− 1)(m+ 1)dl,m+1

is derived automatically and the log-concavity of dl,m is reduced to establishing the
inequality

d2
l,m ≥ 4(m+ 1)

(

4((l −m− 1)(m+ 1) − (2l2 − 4m2 − 7m− 3)dl,m+1dl,m

)

16m3 + 16lm2 + 40m2 + 28lm+ 33m+ 9l + 9

The 2-log-concavity of {dl,m : 0 ≤ l ≤ m}, that is L
(2)({dl,m}) ≥ {0, 0, . . .0} re-

mains an open question. At the end of [20] the authors state that “...we have little
hope that a proof of 2-logconcavity could be completed along these lines, not to
mention that a human reader would have a hard time digesting it.”
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The general concept of infinite log-concavity has generated some interest. D.
Uminsky and K. Yeats [31] have studied the action of L on sequences of the form

(9.6) {· · · , 0, 0, 1, x0, x1, · · · , xn, · · · , x1, x0, 1, 0, 0, · · · }
and

(9.7) {· · · , 0, 0, 1, x0, x1, · · · , xn, xn, · · · , x1, x0, 1, 0, 0, · · · }
and established the existence of a large unbounded region in the positive orthant
of Rn that consists only of infinitely log-concave sequences {x0, . . . , xn}. P. McNa-
mara and B. Sagan [25] have considered sequences satisfying the condition a2

k ≥
rak−1ak+1. Clearly this implies log-concavity of r ≥ 1. Their techniques apply to
the rows of the Pascal triangle. Choosing appropriate r-factors and a computer
verification procedure, they obtain the following.

Theorem 9.3. For fixed n ≤ 1450, the sequence {
(

n
k

)

: 0 ≤ k ≤ n} is infinite
log-concave.

In particular, they looked for values of r for which the r-factor condition is preserved

by the L-operator. The factor that works is r = 3+
√

5
2 (the square of the golden

mean). This technique can be used on a variety of finite sequences. See [25] for a
complete discussion of the techinque.

McNamara and Sagan have also considered q-analogues of the binomial coeffi-
cients. In order to describe these extensions we introduce the basic notation and
refer to the reader to [19] and [5] for more details on the world of q-analogues.

Let q be a variable and for n ∈ N define

(9.8) [n]q =
1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1.

The Gaussian-polynomial or q-binomial coefficients are defined by

(9.9)

[

n
k

]

q

=
[n]q!

[k]q! [n− k]q!
,

where [n]q! := [1]q[2]q · · · [n]q. The Gaussian polynomials have nonnegative coef-
ficients. We will say that the sequence of polynomials {fk(q)} is q-log-concave if
L(fk(q)) is a sequence of polynomials with nonnegative coefficients. The extension
of this definition to infinite q-log-concavity is made in the obvious way.

Observe that

(9.10)

(

n

k

)

= lim
q→1

[

n
k

]

q

.

McNamara and Sagan have established the surprising result:

Theorem 9.4. The sequence

{

[

n
k

]

q

}

k≥0

is not infinite q-logconcave.

In fact they established that applying L twice gives polyomials with some nega-
tive coefficients. As a compensation, they propose:

Conjecture 9.5. The sequence

{

[

n
k

]

q

}

n≥k

is infinite q-log-concave for all fixed

k ≥ 0.
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Another q-analog of the binomial coefficients that arisies in the study of quantum
groups is defined by

(9.11) 〈n〉 :=
qn − q−n

q − q−1
=

1

qn−1
(1 + q2 + q4 + · · · + q2n−2).

From here we proceed as in the case of Gaussian polynomials and define

(9.12)

〈

n

k

〉

:=
〈n〉!

〈k〉! 〈n− k〉!
where 〈n〉! = 〈1〉〈2〉 · · · 〈n〉. For these coefficients McNamara and Sagan have pro-
posed

Conjecture 9.6. a) The row sequence
{〈

n
k

〉}

k≥0
is infinitely q-log-concave for all

n ≥ 0.
b) The column sequence

{〈

n
k

〉}

n≥k
is infinitely q-log-concave for all fixed n ≥ 0.

c) For all integers 0 ≤ u < v, the sequence
{〈

n+mu
mv

〉}

m≥0
is infinitely q-log-concave

for all n ≥ 0.

This conjecture has been verified for all n ≤ 24 with v ≤ 10. When u > v, using

(9.13)

〈

n

k

〉

=
1

qnk−k2

[

n
k

]

q2

one checks that the lowest degree of
〈

n+u
v

〉2 −
〈

n+2u
2v

〉

is −1, so the sequence is not
even q-log-concave. Sagan and McNamara observe that when u = v, the quantum
groups analoge has exactly the same behavior as the Gaussian polynomials.

Newton began the study of log-concave sequences by establishing the following
result (paraphrased in Section 2.2 of [18]).

Theorem 9.7. Let {ak} be a finite sequence of positive real numbers. Assume all
the roots of the polynomial

(9.14) P [ak;x] := a0 + a1x+ · · · + anx
n

are real. Then the sequence {ak} is log-concave.

McNamara and Sagan [25] and, independently, R. Stanley have proposed the
next conjecture.

Conjecture 9.8. Let {ak} be a finite sequence of positive real numbers. If P [ak;x]
has only real roots then the same is true for P [L(ak);x].

This conjecture was also independently made by Fisk. See [25] for the complete
details on the conjecture.

The polynomials Pm(a) in (1.4) are the generating function for the sequence
{dl,m} described here. It is an unfortunate fact that they do not have real roots [7]
so these conjecture would not imply Conjecture 9.2. In spite of this, the asymptotic
behavior of these zeros has remarkable properties. Dimitrov [17] has shown that,
in the right scale, the zeros converge to a lemniscate.

The infinite-log-concavity of {dl,m} has resisted all our efforts. It remains to be
established.
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