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Abstract. A conjecture of G. McGarvey for the 2-adic valuation of the Schenker
sums is established. These sums are n! times the sum of the first n+1 terms of

the series for en. Certain analytic expression for the p-adic valuation of these
sums is provided for a class of primes. Some combinatorial interpretations
(using rooted trees) are furnished for identities that arose along the way.

1. Introduction

Let 0 6= x ∈ Q. The Fundamental Theorem of Arithmetic implies the
prime factorization |x| =

∏

p p
np where the product is over all primes and

for some np ∈ Z (all but finitely many being non-zero). The p-adic valuation

of x, denoted νp(x), is the exponent np in the power of p in the above

factorization. For example, ν2(2
k) = k and ν2(2

k − 1) = 0. Convention:
νp(0) = +∞.

Given a sequence of positive integers an and a prime p, determining a
closed form for the sequence of p-adic valuations νp(an) often presents in-
teresting challenges. Legendre’s classical formula for the factorials

(1.1) νp(n!) =

∞∑

j=0

⌊
n

pj

⌋

appears in elementary textbooks. If n ∈ N is expanded in base p and sp(n)
denotes the sum of its p-ary digits, then the alternative form

(1.2) νp(n!) =
n− sp(n)

p− 1

follows directly from (1.1).
The presence of a compact formula, such as (1.2), facilitates the analysis

of arithmetical properties of a given sequence an. For instance, it follows
directly from (1.2) that

(1.3) νp

(
2n

n

)

=
2sp(n)− sp(2n)

p− 1
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and in particular, for p = 2, this yields

(1.4) ν2

(
2n

n

)

= s2(n),

in view of s2(2n) = s2(n). This provides an elementary proof that the

central binomial coefficients
(
2n
n

)
are always even, and exactly divisible by 2

if and only if n is a power of 2.
Introduce the sequence of positive integers

(1.5) an =

n∑

k=0

n!

k!
nk.

One immediately recognizes that an

n! equals the nth partial sum of the expo-
nential en. The sequence an appeared in a paper by S. Ramanujan [9] where
he proposes the following problem:

Show that

(1.6)
1

2
en = 1 +

n

1!
+

n2

2!
+ · · ·+

nn

n!
θ,

for some θ in the range between 1
2 and 1

3 .

The relation (1.6) may be expressed in the form

(1.7) an =
1

2
n!en + (1− θ)nn.

The sequence {an} resurfaced in Exercise 1.2.11.3.18 of [8] in an urn problem,

There are n balls in an urn. How many selections with replacement are

made, on average, if we stop when we reach a ball already selected?

with answer an/n
n. In relation to this question, D. Knuth introduces the

functions

Q(n) = 1+
n− 1

n
+
(n− 1)(n− 2)

n2
+· · · and R(n) = 1+

n

n+ 1
+

n2

(n+ 1)(n+ 2)
+· · · ,

with Q(n) + R(n) = n!en/nn. To derive asymptotics of the function Q(n),
Ramanujan resorts to the integral representation

(1.8) Q(n) =

∫ ∞

0
e−x

(

1 +
x

n

)n−1
dx.

More details on an asymptotic analysis of the sequence an can be found in
[2] and [5].
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The sequence an is listed as A063170 on OEIS and the name Schenker

sum is given to it. The comments there include the integral representation

(1.9) an =

∫ ∞

0
e−x(x+ n)n dx,

due to M. Somos and the following conjecture by G. McGarvey for the 2-adic
valuation of an.

Conjecture 1.1. For n ∈ N, we have

(1.10) ν2(an) =

{

1 if n is odd

n− s2(n) if n is even.

A primary focus of this paper is to establish the above conjecture and
extend the discussion to odd primes.

2. The proof

The proof starts with an elementary observation.

Lemma 2.1. Suppose A(x) is a polynomial with integer coefficients. As-

sume every coefficient is divisible by r. Then, the integer

(2.1)

∫ ∞

0
A(x)e−x dx

is divisible by r.

Proof. Write A(x) = a0 + a1x+ · · ·+ anx
n and observe that

(2.2)

∫ ∞

0
A(x)e−x dx =

n∑

j=0

aj j!

is clearly divisible by r. �

The previous result shows that if A(x) ≡ B(x) mod r, then

(2.3)

∫ ∞

0
A(x)e−x dx ≡

∫ ∞

0
B(x)e−x dx mod r.

For the proof of the conjecture, the integral representation (1.9) will be
useful. The process consists of two cases based on the parity of n.

Case 1: Suppose n is odd, say n = 2m+ 1. Then

(2.4) an =

∫ ∞

0
(n+ x)ne−x dx ≡

∫ ∞

0
(1 + x)e−x dx = 2 ≡ 0 mod 2
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where Fermat’s little theorem is employed in the first congruence. It follows
that an is even. But an is not divisible by 4. Indeed, if m is even

(2.5) an ≡

∫ ∞

0
(1 + x)e−x dx = 2 ≡ 2 mod 4

and for m odd,

(2.6) an ≡

∫ ∞

0
(3 + x)3e−x dx = 78 ≡ 2 mod 4.

This proves the conjecture when n odd.

Case 2: Suppose n is even, say n = 2m. Then

a2m =

∫ ∞

0
(2m+ x)2me−x dx(2.7)

=

2m∑

k=0

(
2m

k

)

(2m)2m−k

∫ ∞

0
xke−k

=

2m∑

k=0

(
2m

k

)

(2m)2m−k k!.

Let tk be the summand in the last sum. Then 2mtk+1 = (2m− k)tk and
if j = 2m− k, this becomes

(2.8) 2mt2m−j+1 = jt2m−j .

This recurrence is now utilized in expressing the coefficients ti in terms of
t2m and also in analyzing the 2-adic valuation of each term in the sum for
a2m. For example, j = 1 yields t2m−1 = 2mt2m, therefore

(2.9) ν2(t2m−1) = 1 + ν2(m) + ν2(t2m) > ν2(t2m).

Similarly, j = 2 yields t2m−2 = 2m2t2m from which it follows that ν2(t2m−2) >
ν2(t2m) and j = 3 gives the relation 4m3t2m = 3t2m−3 and ν2(t2m−3) >
ν2(t2m) is obtained. In general

Lemma 2.2. For 1 ≤ j ≤ 2m, the inequality ν2(t2m−j) > ν2(t2m) holds.

Proof. Define uj = t2m−j . Then (2.8) gives

(2.10) 2muj−1 = juj .

From here it follows that

(2.11) uj =
2m

j
uj−1 =

2m

j
·

2m

j − 1
uj−2
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and iterating produces

(2.12) uj =
(2m)j

j!
t2m.

Now write

(2.13) j! = 2ν2(j!)O∗(j) = 2j−s2(j)O∗(j),

with O∗(j) representing an odd number, to obtain

(2.14) O∗(j)uj = 2s2(j)mjt2m.

This gives

(2.15) ν2(uj) = s2(j) + jν2(m) + ν2(t2m) > ν2(t2m),

completing the proof as required. �

Note 2.3. Lemma 2.2 implies ν2(a2m) = ν2(t2m) = ν2(n!) = n − s2(n).
This completes the analysis of Case 2 and establishes Conjecture 1.1.

3. The p-adic valuations for p an odd prime

In view of the results established in the previous section, it is natural to
consider the question of what happens when p is an odd prime, i.e., is there
a simple expression for νp(an) when p 6= 2 is a prime? The present section
gives partial answers to this problem.

Proposition 3.1. Let p be an odd prime and assume n = pm for some

m ∈ N. Then

(3.1) νp(an) =
n− sp(n)

p− 1
.

Proof. Consider the integral expression

(3.2) apm =

pm
∑

k=0

(
pm

k

)

(pm)pm−k

∫ ∞

0
xke−x dx =

pm
∑

k=0

(
pm

k

)

(pm)pm−kk!

and let

(3.3) tm,p(k) =

(
pm

k

)

(pm)pm−k k!

be the summand in (3.2). Observe that tm,p(mp) = (pm)!. Pursuant, the
case p = 2, suppose that

(3.4) νp(tm,p(k)) > νp(tm,p(pm)) = νp(n!).
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Then

(3.5) νp(apm) = νp(n!) =
n− sp(n)

p− 1
,

as claimed.
The proof of (3.4) begins with the computation of the ratio of two con-

secutive terms tm,p to produce the relation

(3.6) pm tm,p(k + 1) = (pm− k)tm,p(k).

The proof then proceeds as in the case p = 2. �

The next result is a crucial reduction towards the modular arithmetic
employed in the computation of νp(an).

Proposition 3.2. Let p be a prime and n = pm+ r with 0 < r < p. Then

p|an if and only if p|ar.

Proof. The reduction

(x+n)n ≡ (x+r)pm (x+r)r ≡ (xpm+rpm)(x+r)r ≡ (xpm+rm)(x+r)r mod p,

is due the fact that p divides
(
pm
k

)
for any 0 < k < pm. This implies

an =

∫ ∞

0
(x+ n)ne−x dx

≡

∫ ∞

0
(xpm + rm)(x+ r)re−x dx

=

r∑

j=0

(
r

j

)

rr−j

∫ ∞

0
(xpm + rm)xje−x dx

=

r∑

j=0

(
r

j

)

rr−j [(pm+ j)! + rmj!]

≡

r∑

j=0

(
r

j

)

rm+r−j j!

≡

r∑

j=0

(
r

j

)

rm+j (r − j)!

≡ rm
r∑

j=0

r!

j!
rj

≡ rmar mod p.

The assertion follows. �
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Before embarking on the more general study, it is worthwhile to consider
some toy examples (small primes). The reader will hopefully find these
illustrative of the potential subtleties and obstacles.

Example 3.3. Let p = 3. Proposition 3.1 gives

(3.7) ν3(a3n) =
1

2
(3n− s3(n)).

The remaining two cases are established by Proposition 3.2. Assume
n = 3m+ r with r = 1, 2. Then 3|an if and only if 3|ar. Neither a1 = 2 nor
a2 = 10 are divisible by 3, therefore 3 does not divide an.

In summary

(3.8) ν3(an) =

{
1
2(n− s3(n)) if n ≡ 0 mod 3

0 if n 6≡ 0 mod 3.

Example 3.4. Let p = 5. This brings in the first difficult problem. Start
with the simpler cases. Proposition 3.1 ensures that

(3.9) ν5(a5n) =
1

4
(n− s5(n)).

By Proposition 3.2 and since none of the numbers a1 = 2, a3 = 78, a4 = 824
is divisible by 5, the following holds

(3.10) ν5(an) = 0 if n ≡ 1, 3, 4 mod 5.

The remaining case ν5(a5n+2) requires a closer look. A preliminary discus-
sion is presented in the next section.

Example 3.5. Let p = 7. Because the first six numbers a1 = 2, a3 =
78, a4 = 824, a5 = 10970, a6 = 176112 are not divisible by 7, it follows that

(3.11) ν7(an) =

{
1
6(n− s7(n)) if n ≡ 0 mod 7

0 if n 6≡ 0 mod 7.

A direct computation of the values of aj modulo 11 shows that aj is not
divisible by 11 for 1 ≤ j < 11. Therefore

(3.12) ν11(an) =

{
1
10(n− s11(n)) if n ≡ 0 mod 11

0 if n 6≡ 0 mod 11.

The case p = 13 is similar to p = 5 since 13 divides a3 = 78.
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4. Schenker primes

The results established in the previous sections determine the valuation
νp(an) for a class of prime numbers. The primes not completely covered by
those methods are fall under a special category as defined below.

Definition 4.1. A prime p is called a Schenker prime if p divides ar for
some value r in the range 1 ≤ r ≤ p− 1.

The result is summarized in the next theorem.

Theorem 4.2. Let p be a prime and assume that p is not a Schenker prime.

Then

(4.1) νp(an) =

{
1

p−1(n− sp(n)) if n ≡ 0 mod p

0 if n 6≡ 0 mod p.

Example 4.3. The prime p = 17 is not a Schenker prime. The factorization
of the numbers ar, for 1 ≤ r ≤ 16 is

a1 = 2 a2 = 2 · 5
a3 = 2 · 3 · 13 a4 = 23 · 103
a5 = 2 · 5 · 1097 a6 = 24 · 32 · 1223
a7 = 2 · 5 · 7 · 41 · 1153 a8 = 27 · 556403
a9 = 2 · 34 · 149 · 163 · 439 a10 = 28 · 52 · 7281587
a11 = 2 · 11 · 9431 · 6672571 a12 = 210 · 35 · 53 · 1443613
a13 = 2 · 13 · 179 · 339211523363 a14 = 211 · 72 · 595953719897
a15 = 2 · 36 · 53 · 317 · 13103 a16 = 215 · 13 · 179 · 116371 · 11858447

The prime p = 17 does not appear in any of these factorizations confirming
that it is not a Schenker prime. In accord with Theorem 4.2, the 17-adic
valuation of the sequence an is explicit:

(4.2) ν17(an) =

{
1
16(n− s17(n)) if n ≡ 0 mod 17

0 if n 6≡ 0 mod 17.

Example 4.4. The prime 5 is a Schenker prime because 5 divides a2 = 10.
Similarly 37 is a Schenker prime since 37 divides a25. The list of all Schenker
primes up to 200 is

(4.3) {5, 13, 23, 31, 37, 41, 43, 47, 53, 59, 61, 71, 79, 101, 103,

107, 109, 127, 137, 149, 157, 163, 173, 179, 181, 191, 197, 199}.

Note 4.5. The valuation ν5(an) is not obvious or as simple, so finding an
analytic/explicit formula for it stands as an open question. The description

given below is purely experimental and no proofs are available at the moment.

The only rigorous result is Example 3.4, which determines the value of ν5(an)
except for indices congruent to 2 modulo 5.
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The indices of the form 5n+2 are first divided according to the parity of
n modulo 5. Symbolic computations show that

(4.4) ν5(a5n+2) = 1 for n 6≡ 2 mod 5.

Therefore it is now required to consider indices of the form

(4.5) m1 = 5(5n+ 2) + 2 = 52n+ 5 · 2 + 2.

Then it is observed that

(4.6) ν5(a52n+5·2+2) = 2 for n 6≡ 0 mod 5,

leading to indices of the form

(4.7) m2 = 53n+ 5 · 2 + 2.

Continuing this process, it is then observed that

(4.8) ν5(a53n+5·2+2) = 3 for n 6≡ 4 mod 5,

leading to indices of the form

(4.9) m3 = 54n+ 53 · 4 + 52 · 0 + 51 · 2 + 2,

and also

(4.10) ν5(a54n+53·2+5·2+2) = 4 for n 6≡ 4 mod 5,

leading to

(4.11) m4 = 55n+ 54 · 4 + 53 · 4 + 52 · 0 + 51 · 2 + 2.

This process can be described in terms of the expansion of the index n in
base 5 in the form

(4.12) n = x0 + x1 · 5 + x2 · 5
2 + x3 · 5

3 + x4 · 5
4 + · · ·

The results of Example 3.4 for ν5(an) are

(4.13) x0 =







0 ν5(an) =
1
4(n− s5(n))

1, 3, 4 ν5(an) = 0

2 ν5(an) depends on x1.

The next steps are

(4.14) x0 = 2 and x1 =

{

6= 2 ν5(an) = 1

2 depends on x2,
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and

(4.15) x0 = 2, x1 = 2 and x2 =

{

6= 0 ν5(an) = 2

0 depends on x3,

and

(4.16) x0 = 2, x1 = 2, x2 = 0 and x3 =

{

6= 4 ν5(an) = 3

4 depends on x4.

The next conjecture has been verified numerically, for the prime p = 5,
up to depth/level 10.

Conjecture 4.6. Assume the valuation ν5(an) is not determined by the first

r digits of n; that is x0, x1, · · · , xr−1 do not determine ν5(an). Then, among

the 5 possible values for xr, there is a single value for which the valuation

is not determined by x0, x1, · · · , xr−1, xr.

Note 4.7. Denote by dj the j-th exceptional digit in Conjecture 4.6. The
list of these digits begins with

(4.17) d0 = 2, d1 = 2, d2 = 0, d3 = 4, d4 = 4.

A similar conjecture has been proposed in [1] and [3] for the p-adic val-
uation of Stirling numbers of the second kind. Conjecture 4.6 is rephrased
using valuation trees.

Tree construction. The tree starts with a top vertex v0 labeled n that
represents all of N. This top vertex forms the first level of the tree. The
expansion of n in base 5 in (4.12) is employed in the description of this tree.

From the top vertex, form the second level consisting of 5 vertices con-
nected to v0. Each vertex corresponds to a value of x1 in the expansion of
n in base 5. The figure shows three types of vertices: those with x0 = 0
for which ν5(an) =

1
4(n − s5(n)) (shown to the left of the tree), those with

x0 6= 0, 2 for which ν5(an) = 0 (shown at the center) and finally those ver-
tices with x0 = 2 for which the valuation ν5(an) is not determined by x0. In
this form, each vertex represents a subset of N determined by some property
of the digits xi. Each vertex has a symbol indicating the type of digit xi it
represents (to be more precise all the properties determining this subset is
obtained by reading the path from the top vertex to the vertex in question)
and also the valuation ν5(an) for those indices n associated to the vertex.
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b

b

b b

b

b

b

b

b

b

b

b

b

n

x0 6= 0,−2

0

x0 = 0
1
4

(
n− s5(n)

)
x0 = 2

ν5(an) =??

x1 6= 2

1

x1 = 2

ν5(an) =??

x2 6= 0

2

x2 = 0

ν5(an) =??

x3 6= 4

3

x3 = 4

ν5(an) =??

The valuation tree for p = 5

The discussion that follows excludes the vertex corresponding to x0 = 0.
The valuation for the indices corresponding to this vertex are determined
by Proposition 3.1.

Definition 4.8. A vertex is called terminal if the valuation is the same for
all indices associated to the vertex.

Example 4.9. All indices n associated to the vertex corresponding to x0 = 1
have valuation ν5(an) = 0; that is ν5(a5n+1) = 0. Therefore this vertex is
terminal. On the other hand, if n = 7 then

(4.18) ν5(a7) = ν5(3309110) = 1

and

(4.19) ν5(a17) = ν5(4845866591896268695010) = 3.

Both indices 7 and 17 are associated to the vertex with x0 = 2 and they
have different valuation. Therefore this is not a terminal vertex.

Note 4.10. The first level consists of the vertex with x0 = 0, excluded from
this discussion, the three vertices with x0 = 1, 3, 4 (shown as one single
vertex in the tree), and the vertex with x0 = 2. This last vertex produces
5 new ones that form the second level. These five vertices correspond to
indices with x0 = 2 and 0 ≤ x1 ≤ 4. Each of them have a set of indices
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attached to them, for instance x1 = 2 correspond to indices of the form
n = x0 + 5x1 + 52m = 2 + 5 · 2 + 52m = 12 + 25m. This describes the
construction of the valuation tree: non-terminal vertices produce 5 new
vertices at the next level.

Definition 4.11. The tree constructed above, extended naturally by simply
replacing 5 by a prime p, is called the valuation tree for p.

The structure of this valuation tree described in the next conjecture gen-
eralizes Conjecture 4.6.

Conjecture 4.12. Assume p is a Schenker prime. Then each level of the

valuation tree for p contains a single non-terminal vertex.

5. The combinatorics of an

The arithmetic properties of the sequence an discussed in the earlier sec-
tions are based on the integral representation (1.9). In this section, an alter-
ative binomial representation of an is established which naturally prompts
combinatorial proofs of the identities thus found.

Theorem 5.1. The following identity provides two different formulation for

the sequence an:

(5.1)

n∑

k=0

n!

k!
nk =

n∑

k=0

(
n

k

)

kk(n− k)n−k.

Proof. Define

An(t) = t

n∑

k=0

(
n

k

)

(t+ k)k−1(n− k)n−k(5.2)

Bn(t) =

n∑

k=0

n!

(n− k)!
(t+ n)n−k,

Cn(t) =

n∑

k=0

(
n

k

)

(t+ k)k(n− k)n−k.

The relation (t+ k)k = t(t+ k)k−1 + k(t+ k)k−1 gives

(5.3) Cn(t) = An(t) + nCn−1(t+ 1).

The value

(5.4) An(t) = (t+ n)n

follows directly from Abel’s identity

(5.5)

n∑

k=0

(
n

k

)

(t+ k)k−1(s− k)n−k =
(t+ s)n

t
,
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Then

(5.6) Cn(t) = (t+ n)n + nCn−1(t+ 1),

and it is easy to check that Bn also satisfies this recurrence. Since both Bn

and Cn have the same initial conditions, it follows that Bn(t) = Cn(t). The
stated result now comes from Bn(0) = Cn(0). �

Note 5.2. A nice proof of Abel’s identity (5.5) appears in [4]. A nice combi-
natorial interpretation may be found in [6, 7] with the following picturesque
formulation. Whereas the binomial identity (t + s)n =

∑n
k=0

(
n
k

)
tksn−k

counts functions f : [n] → [t + s] by the number of elements that map

directly to [t], that is, by number of elements i ∈ [n] for which f(i) ∈ [t],
(5.5) counts these same functions by the number of elements that ultimately

map to [s + 1, s + t], that is, by number of elements i ∈ [n] for which
f◦f◦...◦f
︸ ︷︷ ︸

m

(i) ∈ [s + 1, s + t] for some m ≥ 1 (assuming s ≥ n so that all

summands are nonnegative).

The identity Bn(t) = Cn(t) implies another well known identity.

Corollary 5.3.

(5.7) n! =

n∑

r=0

(−1)r
(
n

r

)

(n− r)n.

Proof. Matching powers of t in Bn(t− n) = Cn(t− n) gives

(5.8)
n!

k!
= (−1)k

n∑

r=k

(−1)r
(
n

r

)(
r

k

)

(n− r)n−k

and the special case k = 0 gives the result. �

Note 5.4. An elementary combinatorial proof of (5.7) is obtained by count-
ing all the n! bijective functions on a set of n elements. The right-hand side
employs the inclusion-exclusion principle by excluding maps according to
the number of elements missed in the range.

Note 5.5. Theorem 5.1, after canceling some equal terms, is equivalent to
the identity,

(5.9)

n∑

k=2

n!

(n− k)!
nn−k =

n−1∑

k=1

(
n

k

)

kk(n− k)n−k

for which we now give a combinatorial interpretation.
We will show that (5.9) counts a class of rooted trees in two different

ways. Let us say a vertex in a rooted tree is a descendant of an edge in



14 T. AMDEBERHAN, D. CALLAN, AND V. MOLL

the tree if the path from the vertex to the root includes the edge. Define
an ev-tree to be a rooted vertex-labeled tree on [n] with a highlighted edge e
and a marked descendant v of e, as illustrated below with n = 9. Call the
(unique) path starting at edge e and ending at vertex v the critical path of
an ev-tree.

b

b

b

b

b

b b b

b

b

8

2

9

7

4

1 3 6

5

e

v

An ev-tree

In the example, e = 74 (in blue) and v = 3 (in red). The descendants of e
are 4, 1, 3, 6, 5 and the critical path is 7 → 4 → 3.

The left side of (5.9) counts ev-trees by the length k of the critical path as
follows. Choose the k vertices that occur on the critical path—

(
n
k

)
choices.

Form a forest of trees on [n] rooted at these k vertices—knn−k−1 choices [10,
Proposition 5.3.2]. Put a cycle structure on the k roots—(k − 1)! choices.
Mark one of the vertices in the forest—n choices. Turn the cycle of roots into
a path, r1 → r2 → · · · → rk, by starting at the root of the tree containing
the marked vertex. Ignoring the orientation of edges in this path, we now
have a tree rooted at the marked vertex. Take e to be the edge r1r2 and v
to be the vertex rk. This is the desired ev-tree and by construction, there
are

(
n
k

)
· knn−k−1 · (k − 1)! · n = n!

(n−k)!n
n−k of them.

On the other hand, the right side of (5.9) counts ev-trees by the number
k of descendants of e as follows. Choose the descendants of e—

(
n
k

)
choices—

and form a rooted tree on these vertices with one vertex colored blue—kk

choices, because Cayley’s formula says there are kk−1 rooted trees. Similarly,
form a rooted tree on the remaining n− k vertices with one vertex colored
blue—(n − k)n−k choices. Now join the two blue vertices with a blue edge
and change the root of the first tree to a red vertex. The result will form an
ev-tree by taking the blue edge as e and the red vertex as v.

Actually, identity (5.9) can be sharpened. Every term on the left side is
obviously divisible by n and it is a fact, not quite so obvious, that every
term on the right is also divisible by n. So we can divide by n to get another
integer identity,

(5.10)

n∑

k=2

(n− 1)!

(n− k)!
nn−k =

n−1∑

k=1

1

n

(
n

k

)

kk(n− k)n−k.
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Basically the same interpretation works for (5.10): simply observe that in-
crementing the vertex labels, i → i + 1 (mod n), in an ev-tree leaves the
statistics “number of descendants of the highlighted edge” and “length of
the critical path” invariant, and partitions the class of ev-trees on [n] into
orbits, each of which has size n. So just pick out the ev-tree in each orbit
whose root is, say, 1. Note that this argument provides a combinatorial
proof that the summand on the right side of (5.10) is an integer.

Note 5.6. The sums in (5.10) give (an)n≥1 = (1, 8, 78, 944, . . .), A000435,
“the sequence that started it all”. A comment on A000435 by Geoffrey
Critzer says that a(n) is the number of connected endofunctions on [n] with
no fixed points, that is, functions f : [n] → [n] with only one orbit of periodic
points (connected) whose length is ≥ 2 (no fixed points). In fact, ev-trees
with root 1 are just another way of looking at these endofunctions.
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