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VICTOR H. MOLL

To Donald J. Newman, who knew that integrals were fun.

1. Introduction

Every undergraduate student encounters the evaluation of integrals at an early
stage of his/her education. In my case this happened in a class at the Universidad
Santa Maria, Valparaiso, Chile. There, we aspiring engineers were required to use
the CRC Table [25]. This note tells the story of a series of fortunate encounters that
have introduced the author to the wonderful world of the evaluation of integrals.
The reader will see that there are very interesting questions left even in apparently
elementary parts of mathematics. Many of the results contained here are on the
author’s website http://www.math.tulane.edu/∼vhm.

The main character of this paper is a sequence of rational numbers

(1.1) dl,m = 2−2m
m
∑

k=l

2k

(

2m− 2k

m− k

)(

m+ k

m

)(

k

l

)

, m ∈ N and 0 ≤ l ≤ m,

that appeared in the evaluation of the quartic integral

(1.2) N0,4(a;m) =

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
.

This is a remarkable sequence, connected to many interesting questions. The recent
advances in communications and the possibility of fast search on literature, has
accelerated collaborations in mathematics. The study of the properties of {dl,m},
has led the author to many rewarding and unexpected collaborations.1

2. The evaluation of Integrals

Elementary mathematics leaves the impression that there is a marked difference
between the two branches of calculus. Differentiation is a systematic subject: every
evaluation is a consequence of a number of established rules and basic examples.
However, integration is a mixture of art and science. The successful evaluation
of an integral depends on the right approach, the right change of variables or a
patient search in a table of integrals. In fact, the theory of indefinite integrals of
elementary functions is complete [10]. Risch’s algorithm determines whether a given
function has an antiderivative within a given class of functions. For example, this
theory shows that if f and g are rational functions with g(x) nonconstant, then
f(x)eg(x) has an elementary primitive precisely when f(x) = R′(x) + R(x)g′(x)

for some rational function R. In particular e−x2

has no elementary primitive − a
well-known fact.

Date: August 30, 2009.
Key words and phrases. Integrals.
1The author wishes to thank Dante V. Manna for remarks on an earlier version of the paper.
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2 VICTOR H. MOLL

However, the theory of definite integrals is far from complete and there is no
general theory available. The nature of the constant in the evaluation of a definite
integral is hard to predict as seen in the example

(2.1)

∫ ∞

0

e−x dx = 1,

∫ ∞

0

e−x2

dx =

√
π

2
, and

∫ ∞

0

e−x3

dx = Γ

(

4

3

)

.

The first integrand has an elementary primitive, the second integral is the classical
Gaussian and the evaluation of the third requires Euler’s gamma function defined
by

(2.2) Γ(a) =

∫ ∞

0

xa−1e−x dx.

Interesting numbers emerge from elementary manipulations of integrals. To wit,
differentiating (2.2) at a = 1 yields the numerical constant

(2.3)

∫ ∞

0

e−x log xdx = −γ

known as the Euler’s constant, defined by γ = lim
n→∞

(

n
∑

k=1

1

k
− log n

)

. Havil’s book

[15] is devoted to the story of this intriguing constant.
Another illustration of the deceptiveness of definite integrals is the fact that

(2.4)

∫ ∞

−∞

dx

(ex − x− 1)2 + π2
=

1

2

is obtained by elementary methods, but the similar-looking integral

(2.5)

∫ ∞

−∞

dx

(ex − x)2 + π2

is given by (1 −W (1))−1, where W (z) is the Lambert W-function, defined as the
solution to the transcendental equation xex = z. It is unknown whether this integral
has a simpler analytic representation, but experts believe it is unlikely that it does.

In this note, the reader will find some of the mathematics behind the evaluation
of definite integrals. Most of the results are quite elementary, but be mindful if
somebody asks you to compute an integral: if ζ(s) denotes the classical Riemann
zeta function, V. V. Volchkov [24] has shown that establishing the exact value

(2.6)

∫ ∞

0

(1 − 12t2)

(1 + 4t2)3

∫ ∞

1/2

log |ζ(σ + it)| dσ dt =
π(3 − γ)

32
,

is equivalent to the Riemann hypothesis. Evaluating (2.6) might be hard.
It remains to explain why we evaluate integrals. This paper gives some anecdotal

answers. The general response is that these questions lead to challenging problems
that do not require an extensive background, which have provided inspiration for
interesting student research projects [5, 6]. In addition, the computation of integrals
has been shown to be connected to many parts of mathematics.

Once in a while, a nice evaluation produces a beautiful proof. For example,

(2.7)

∫ 1

0

x4(1 − x)4

1 + x2
dx =

22

7
− π
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proves that π 6= 22
7 . This evaluation, which has a long history, is used by H. Medina

[20] to produce reasonable approximations to tan−1 x and has been revisited by S.
K. Lucas in [18]. The latter contains, among many interesting results, the identity

(2.8)

∫ 1

0

x5(1 − x)6(197 + 462x2)

530(1 + x2)
dx = π − 333

106

that exhibits the relation of π to its second continued fraction approximation.
To explain our motivation, we adapt a quote from George Mallory, when asked

about climbing the Everest. We evaluate integrals because they are there.
The mathematical point of view described here is the author’s perspective of

Experimental Mathematics. Supplementary accounts are given by D.H. Bailey and
J. M. Borwein in [2] and also by D. Zeilberger in his interview [13].

3. A graduate student

A version of this story has already been told in [21]. George Boros (1947-2003)
came to my office one day, stating that he could evaluate the integral

(3.1) N0,4(a;m) =

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
.

His result says: for a > −1 and m ∈ N, we have

(3.2) N0,4(a;m) =
π

2m+3/2 (a+ 1)m+1/2
Pm(a),

where Pm is a polynomial of degree m, written as

(3.3) Pm(a) =

m
∑

l=0

dl(m)al,

and

dl,m =

l
∑

j=0

m−l
∑

s=0

m
∑

k=s+l

(−1)k−l−s

23k

(

2k

k

)(

2m+ 1

2(s+ j)

)(

m− s− j

m− k

)(

s+ j

j

)(

k − s− j

l − j

)

,

from which it follows that dl(m) is a rational number.
The proof is elementary and is based on the changes of variables x = tan θ, and

then George had the clever idea of doubling the angle; that is, introducing a new
variable u = 2θ. This yields a new form for the integral (3.1) and the expression
for dl(m). The double angle substitution is the basic idea behind the new theory
of rational Landen transformations. The reader will find in [19] a recent survey on
this topic.

Having no experience in special functions, my reaction to this result was (i) a
symbolic language like Mathematica or Maple must be able to do it, (ii) there must
be a simpler formula for the coefficients dl,m and (iii) it must be known.

It was surprising to find out that the Mathematica version of the time was unable
to compute (3.1) when a and m are entered as parameters. The symbolic status of
N0,4(a;m) has not changed much since it was reported on [21]. Mathematica 6.2 is
still unable to solve this problem.
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On the other hand, the corresponding indefinite integral is evaluated in terms of
the Appell-F1 function, defined by

(3.4) F1(a; b1, b2; c;x, y) :=
∞
∑

m=0

∞
∑

n=0

(a)m+n(b1)m(b2)n

m!n!(c)m+n
xmyn,

as
∫

dx

(x4 + 2ax2 + 1)m+1
= xF1

[

1

2
, 1 +m, 1 +m,

3

2
,− x2

a+
,− x2

a−

]

,

where a± := a ±
√
−1 + a2. Here (a)k = a(a + 1) · · · (a + k − 1) is the ascending

factorial. This clarifies my reaction (i) and also makes the point that the evaluation
of integrals, with the help of a symbolic language is a natural guide into the field
of Special Functions.

The search for a simpler formula started with the experimental observation that,
in spite of the alternating signs in the formula for dl,m, these coefficients are all
positive. It took us some time to find

(3.5) dl,m = 2−2m
m
∑

k=l

2k

(

2m− 2k

m− k

)(

m+ k

m

)(

k

l

)

.

The first proof is based on the mysterious appearance of the integral N0,4(a,m) in
the expansion

(3.6)

√

a+
√

1 + c =
√
a+ 1 +

1

π
√

2

∞
∑

k=1

(−1)k−1

k
N0,4(a; k − 1)ck.

George figured out how to use Ramanujan Master’s Theorem [3] to produce (3.5).
The author asked him many times to explain his train of thoughts leading to this
connection. There was never a completely logical path: He simply knew how to

integrate.
The expression

(3.7) Pm(a) = 2−2m
m
∑

k=0

2k

(

2m− 2k

m− k

)(

m+ k

m

)

(a+ 1)k

shows that the polynomial Pm(a) is an example of the classical Jacobi family

(3.8) P (α,β)
m (a) :=

m
∑

k=0

(−1)m−k

(

m+ β

m− k

)(

m+ k + α+ β

k

)(

a+ 1

2

)k

with parameters α = m+ 1
2 and β = −(m+ 1

2 ). The parameters α and β, usually
constants, are now dependent upon m. We were surprised not to find an explicit
evaluation for N0,4(a;m) in [14]. It turns out that this integral appears in an
equivalent form as entry 3.252.11. This is the answer to (iii).

4. A conference at Penn State or how I got Erdős number 2

It was then important to present our results in public. We decided to volunteer
a talk at a conference. A special one celebrating Basil Gordon’s 65th birthday was
being organized at Penn State2. Trying to find a way to close my talk with a

2The author wishes to use this occasion to thank the organizers for the chance to speak there.
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question in number theory, it occured to me to describe a new formula for dl,m.
The idea behind it is simple: write (3.2) as

(4.1) Pm(a) =
2

π
[2(a+ 1)]

m+
1
2 N0,4(a;m)

and compute dl,m from the Taylor expansion at a = 0 of the right hand side. This
yields

(4.2) dl,m =
1

l!m!2m+l

[

αl(m)

m
∏

k=1

(4k − 1) − βl(m)

m
∏

k=1

(4k + 1)

]

,

where αl and βl are polynomials in m of degrees l and l− 1, respectively. The last
transparency from my talk contained the formula

(4.3) d1,m =
1

m! 2m+1

[

(2m+ 1)

m
∏

k=1

(4k − 1) −
m
∏

k=1

(4k − 1)

]

,

and the observation that the numerator is an even number, so it might be of interest
to find out the exact power of 2 that divides it, that is, its 2-adic valuation ν2(dl(m)).
( For a prime p, write m = par where p does not divide r. Then the integer a is
the p-adic valuation of m, denoted by νp(m)).

A short time later, I received a fax from Jeffrey Shallit stating that he had
established the result

(4.4) ν2(d1(m)) = 1 − 2m+ ν2

((

m+ 1

2

))

+ S2(m),

where S2(m) is the sum of the binary digits of m. Revista Scientia is a journal
produced by the Department of Mathematics at Universidad Santa Maria, Val-
paraiso, Chile, my undergraduate institution. This was perfect timing: there was
going to be a special issue dedicated to the memory of Miguel Blazquez, one of my
undergraduate teachers. The results on the valuation of d1,m appeared in [7].

The polynomials αl and βl do not have simple analytic expressions. One unin-
spired day, we decided to compute their roots numerically. We were pleasantly
surprised to discover the following:

Theorem 4.1. For all l ≥ 1, all roots of αl(m) = 0 lie on the line Rem = − 1
2 .

Similarly, the roots of βl(m) = 0 for l ≥ 2 lie on the same vertical line.

The first step in the proof of this theorem took place at lunch during the 2000
Summer Institute for Mathematics for Undergraduates at the University of Puerto
Rico at Humacao. John Little was a guest speaker and he is enthusiastic about
problems involving polynomials. The result of that conversation is a series of email
exchanges where the details of the proof of Theorem 4.1 were explained to me. The
location of the zeros of αl(m) now suggest studying the behavior of this family as
l → ∞. In the best of all worlds, one will obtain an analytic function of m with all
the zeros on a vertical line. Perhaps some number theory will enter and ... there is

no telling what will happen.

5. The Gradshteyn and Ryzhik project

The problem of analytic evaluations of definite integrals has been of interest to
scientists since integral calculus was developed. The central question is, loosely
stated:
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Given a class of functions F and an interval [a, b] ⊂ R, express the integral of

f ∈ F

I =

∫ b

a

f(x) dx,

in terms of the special values of functions from an enlarged class G.

The theory in the case of indefinite integrals is well developed. For instance, by
elementary arguments it is possible to show that if F is the class of rational func-
tions, then the enlarged class G is obtained by including logarithms and inverse
trigonometric functions. In the 1980’s G. Cherry discussed extensions of this clas-
sical paradigm. The following example illustrates the relevant issues in describing
G: we can evaluate

(5.1)

∫

x3 dx

log(x2 − 1)
=

1

2
li(x4 − 2x2 + 1) +

1

2
li(x2 − 1),

but

(5.2)

∫

x2 dx

log(x2 − 1)

cannot be written in terms of elementary functions and the logarithmic integral

(5.3) li(x) :=

∫

dx

log x

that appears in (5.1). The reader will find in [10] the complete theory behind
integration in terms of elementary functions.

On the other hand, the theory of definite integrals is less developed. Examples
are evaluated by a series of ad-hoc procedures and have been collected in tables. The
earliest volume available to the author is Tables d’integrales definies [4], compiled
by Bierens de Haan, who also presented in 1862 a survey of the methods employed
in the verification of the entries. These tables form the main source for the popular
volume by I. S. Gradshteyn and I. M. Ryzhik [14]. There are many other interesting
tables of integrals, from the one by A. Apelblat, small and beautiful, to the five
volume compendium by A. P. Prudnikov et al., encyclopedic and very expensive.
The choice of [14] is a popular compromise.

Once the author realized that there were interesting mathematics encoded in
formula 3.252.11 of [14] that gave (3.1), we began to wonder what else was in that
table. Perhaps it would be a good idea to verify every formula in it by hand, since
most entries cannot be evaluated symbolically. This has proven to be a larger task
than originally thought. The author has begun a systematic verification of the
entries in [14], and the proofs have appeared in Revista Scientia.

Given the large number of entries in [14], we have not yet developed an order in
which to check them. Once in a while an entry catches our eye. This was the case
with entry 3.248.5 in the sixth edition of the table by Gradshteyn and Ryzhik. The
presence of the double square root in the appealing integral

(5.4)

∫ ∞

0

dx

(1 + x2)3/2
[

ϕ(x) +
√

ϕ(x)
]1/2

=
π

2
√

6
,
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with

(5.5) ϕ(x) = 1 +
4x2

3(1 + x2)2
,

reminded us of (3.6). Unfortunately (5.4) is incorrect. The numerical value of the
left hand side is approximately 0.666377 and the right hand side is about 0.641275.
The table [14] is continually being revised. After we informed the editors of the
error in 3.248.5, it was taken out. There is no entry 3.248.5 in [14]. At the present
time, we are still reconcile this formula.

The revision of integral tables is nothing new. C. F. Lindman compiled in 1891
a long list of errors from the table by Bierens de Haan [4]. The editors of [14]
maintain the webpage http://www.mathtable.com/gr/ where the corrections to
the table by I.S Gradshteyn and I. M. Ryzhik are stored.

Integral tables are organized like a phonebook: entries that look similar are
placed together. However, the fact that two integrals are close in the table is not a
reflection of the techniques involved in their evaluation. For example, 4.229.4 gives

(5.6)

∫ 1

0

log

(

log
1

x

)(

log
1

x

)µ−1

dx = ψ(µ)Γ(µ),

for Reµ > 0, and 4.229.7 states that

(5.7)

∫ π/2

π/4

log log tanxdx =
π

4

(

4 logΓ

(

3

4

)

− log π

)

.

Indeed, the formula (5.6) is established by the change of variables v = − log x
followed by differentiating the gamma function (2.2) with respect to the parameter
µ. The function ψ(µ) in (5.6) is simply the logarithmic derivative of Γ(µ) and the
formula has been checked. The situation is quite different for (5.7). This formula
is the subject of the elegant paper [23] in which the author uses analytic number
theory to check its validity. The ingredients of the proof are quite formidable: I.
Vardi shows that

(5.8)

∫ π/2

π/4

log log tanxdx =
d

ds
Γ(s)L(s)

∣

∣

∣

s=1
,

where where L(s) = 1− 1
3s

+ 1
5s

− 1
7s

+ · · · is the Dirichlet L-function. The compu-
tation of (5.8) is done in terms of the Hurwitz zeta function

(5.9) ζ(q, s) =

∞
∑

n=0

1

(n+ q)s
,

defined for 0 < q < 1 and Re s > 1.
Vardi’s technique has been extended in Luis Medina’s Ph.D. thesis at Tulane.

Examples of integrals evaluated there include

(5.10)

∫ ∞

0

log x log tanhxdx =
γπ2

8
− 3

4
ζ′(2) +

π2 log 2

12
,

and

(5.11)

∫ 1

0

log(1 + x+ x2) log log 1/x
dx

x
= −γ π

2

9
+

1

18
π2 log 3 +

2

3
ζ′(2).
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6. A productive trip to Chile

During the summer of 1999 I was invited to lecture on Integrals at Universidad
Santa Maria. During the presentation of Vardi’s method using the Hurwitz zeta
function to evaluate (5.6), Olivier Espinosa mentioned that this function plays a
role in the problem of a gas of non-interacting electrons in the background of a
uniform magnetic field. For instance, it is shown that the density of states g(E), in
terms of which all thermodynamic functions are to be computed, is written as

(6.1) g(E) = V
4π

h3
(2e~B)1/2EH1/2

(

E2 −m2

2e~B

)

,

where V stands for volume, B for magnetic field, m is the electron mass, ~ is
Planck’s constant, e is the electron charge and

(6.2) Hz(q) := ζ(z, {q}) − ζ(z, q + 1) − 1

2
q−z,

with {q} the fractional part of q. The Hurwitz zeta function also appears in the
evaluation of functional determinants and many other parts of mathematical physics
[12].

The function log Γ(x) makes its appearance through Lerch’s formula

(6.3)
d

dz
ζ(z, q)

∣

∣

∣

z=0
= log Γ(q) − log

√
2π.

The first few formulas are evaluated symbolically:

∫ 1

0

q log Γ(q)dq =
ζ′(2)

2π2
+

1

3
log

√
2π − γ

12
,

∫ 1

0

q2 log Γ(q)dq =
ζ′(2)

2π2
+
ζ(3)

4π2
+

1

6
log

√
2π − γ

12
,

∫ 1

0

q3 log Γ(q)dq =
ζ′(2)

2π2
+

3ζ(3)

8π2
− 3ζ′(4)

4π4
+

1

10
log

√
2π − 3γ

40
.

My favorite unevaluated interal is, without a doubt, one that is related to Euler’s
result

(6.4)

∫ 1

0

log Γ(q)dq = log
√

2π.

Using Lerch’s formula and an expression for the product of two Hurwitz zeta func-
tions, we obtained

(6.5)

∫ 1

0

log2 Γ(q)dq =
γ2

12
+
π2

48
+

1

3
γ log

√
2π +

4

3
log2

√
2π

− (γ + 2 log
√

2π)
ζ′(2)

π2
+
ζ′′(2)

2π2
.

The obvious next step would be to evaluate

(6.6) L3 :=

∫ 1

0

log3 Γ(q) dq.
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We have been unable to do this, but this question has interesting connections with
multiple zeta values of the form

(6.7) T (a, b, c) =

∞
∑

n=1

∞
∑

m=1

1

namb(n+m)c
.

The book [8] has a nice introduction to these sums.

This encounter in Chile began a fruitful collaboration. Olivier, who studies
particle physics for a living, now spends his free time thinking about integrals.
Evaluating integrals will take you to unexpected places.

7. Combinatorial aspects of the coefficients dl,m

Now we return to the coefficients dl,m in (3.5). Fixing m and plotting the
list {dl,m : 0 ≤ l ≤ m} reveals their unimodality. Recall that a finite sequence
of real numbers {x0, x1, . . . , xm} is said to be unimodal if there exists an index
m∗ such that xj increases up to j = m∗ and decreases from then on, that is,
x0 ≤ x1 ≤ · · · ≤ xm∗ and xm∗ ≥ xm∗+1 ≥ · · · ≥ xm. A polynomial is said to be
unimodal if its sequence of coefficients is unimodal. Unimodal polynomials arise
often in combinatorics, geometry and algebra.

The unimodality of the coefficients dl,m follows directly from the representation
(3.7) and the next theorem.

Theorem 7.1. If P (x) is a polynomial with positive nondecreasing coefficients,
then P (x+ 1) is unimodal.

A condition stronger than unimodality is logconcavity. A sequence of positive
real numbers {x0, x1, · · · , xm} is said to be logarithmically concave (or logconcave

for short) if xj+1xj−1 ≥ x2
j for 1 ≤ j ≤ m− 1. It is easy to see that if a sequence is

logconcave then it is unimodal. Extensive computations showed that the sequence
{dl,m : 0 ≤ l ≤ m} was logconcave. This question lead us to the study of the zeros
of the polynomial Pm(a). It turns out that if all the zeros of a polynomial are real
and negative, then it is logconcave and therefore unimodal. Unfortunately Pm has
the minimal possible number of real zeros: 0 if m is even and 1 if odd. Figure 1
plots these zeros for 1 ≤ m ≤ 100 and Figure 2 plots the zeros of Pm divided by
the corresponding degree.

Figure 1. The zeros
of Pm(a)

Figure 2. The scaled
zeros of Pm(a)

A remarkable result of Dimitrov [11] shows that the zeros of Pm(a) divided by the
degree m converge to the left half of the lemniscate of Bernoulli given by the polar
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equation r2 = 2 cos 2θ, for θ ∈ (3π/4, 5π/4). This is reminiscent of the phenomena
observed by Polya for the zeros of the partial sums of the exponential function.

The unimodality of dl,m was relatively easy to show. The fact that dl,m was
logconcave turned out to be considerably more difficult and its proof came from an
unexpected source [16]. Starting with the triple sum

(7.1) dl,m =
∑

j,s,k

(−1)k+j−l

23(k+s)

(

2m+ 1

2s

)(

m− s

k

)(

2(k + s)

k + s

)(

s

j

)(

k

l − j

)

,

the authors used the RISC package MultiSum to produce the recurrence

(7.2) 2(m+ 1)dl,m+1 = 2(l +m)dl−1,m + (2l + 4m+ 3)dl,m

that implies the positivity of dl,m. The next recurrence derived in automatic fashion
is

(7.3) (m+ 2 − l)(m+ l − 1)dl−2,m − (l − 1)(2m+ 1)dl−1,m + (l − 1)ldl,m = 0.

This enabled them to identify Pm(a) as a Jacobi polynomial. Finally, using the
method of cylindrical algebraic decomposition, the authors produced the inequality

(7.4) dl,m+1 ≥ 4m2 + 7m+ l + 3

2(m+ 1 − l)(m+ 1)
dl,m

that implies the logconcavity of dl,m.
Define the operator L(aj) := a2

j − aj−1aj+1, so that a logconcave sequence a

is one such that a := {an : n ∈ N} and L(a) are positive. A sequence is called
infinitely logconcave if it remains positive after applying L any number of times.
We have conjectured that {dl,m : 0 ≤ l ≤ m} is infinitely logconcave. The same
seems to be true for the binomial coefficients {

(

m
l

)

: 0 ≤ l ≤ m}. Most likely this
is easier to prove, but we have not been able to do so.

8. The p-adic point of view

In this last section we go back to divisibility questions for the sequence dl,m.
The generalization of (4.4) was obtained in joint work with T. Amdeberhan and
D. Manna during the post-Katrina semester3 when we were all on sabbatical out
of necessity.

It is convenient to introduce some rescaling of dl,m given by

(8.1) Al,m := l!m!2m+ldl,m =
l!m!

2m−l

m
∑

k=l

2k

(

2m− 2k

m− k

)(

m+ k

m

)(

k

l

)

.

The pictures of the 2-adic valuations of Al,m become increasingly complicated as l
increases. Figure 3 shows l = 3 and Figure 4 shows l = 59.

It was surprising to find out that the valuation of Al,m is intimately linked to
the Pochhammer symbol (a)k = a(a+ 1) · · · (a+ k − 1) in a very simple manner.

Theorem 8.1. The 2-adic valuation of Al,m satisfies

(8.2) ν2(Al,m) = ν2((m+ 1 − l)2l) + l.

3The author wishes to thank the Courant Institute for its hospitality during that period.
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Figure 3. The valua-
tion of A3,m
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Figure 4. The valua-
tion of A59,m

This result is now obtained in completely automatic fashion. Define the numbers

(8.3) Bl,m :=
Al,m

2l(m+ 1 − l)2l
.

It is required to prove that Bl,m is odd. The WZ-method [22] provides the recur-
rence

(8.4) Bl−1,m = (2m+ 1)Bl,m − (m− l)(m+ l + 1)Bl+1,m, 1 ≤ l ≤ m− 1.

Since the initial values Bm,m = 1 and Bm−1,m = 2m+1 are odd, it follows that Bl,m

is an odd integer. There is also a genuine computer-free proof of this result. The
point of view of the author is that we use all the tools available to us. Experimenting

with the computer is here to stay.

root

2m 2m−1

4m 4m−2 4m−3

8m 13

4m−1

14
8m−4 13

16 16

Figure 5. The decision tree for l = 5

In view of the complexities seen in Figures 3 and 4 it was a remarkable surprise
when Xinyu Sun told me that he had an exact formula for the 2-adic valuation of
Al,m. To describe it, we associate to each index l a labelled binary tree T (l) that
encodes the 2-adic information of Al,m. This is the decision tree for l. It is sufficient
to consider l odd. Vertices of degree 1 will be called terminal. The description of
T (l) is remarkably simple. The first generation of T (l) that contains terminal

vertices is given by k∗(l) = ⌊log2 l⌋ and there are precisely 2k∗+1 − l terminal
vertices there. The tree T (l) has one more generation consisiting of 2(l − 2k∗)
terminal vertices. There is also a well defined mechanism to label the terminal
vertices (involving valuations of factorials).
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The explicit formula for ν2(A5,j) is given by

(8.5) ν2(A5,2j) =































14 + ν2
(

j+2
4

)

if j ≡ 2 mod 4,

13 + ν2
(

j+1
4

)

if j ≡ 3 mod 4,

13 + ν2
(

j+3
4

)

if j ≡ 1 mod 4,

16 + ν2
(

j
8

)

if j ≡ 0 mod 8,

16 + ν2
(

j+4
8

)

if j ≡ 4 mod 8,

for even indices. The odd index case is obtained from the relation ν2(A5,2j+1) =
ν2(A5,2j).

200 400 600 800 1000

-2

-1

1

2

Figure 6. The error
term ν5(A3,m) −m/4
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1

2

3

4

Figure 7. The error
term ν5(A4,m) −m/4

The analysis for the prime 2 seems rather complete, but what about odd primes?
A symbolic calculation shows that νp(Al,m) grows linearly with m. Moreover, the
slope is conjectured to be 1/(p− 1). The error term for p = 5 is shown in Figures
6 and 7 for Al,m with l = 3 and l = 4, respectively. An analytic description might
produce some more insight into this sequence.

The question of evaluation of definite integrals has taken us into a journey full of
mathematical surprises. Many of them would not have been possible without the
help of a symbolic software. We conclude with figures illustrating two instances of
Experimental Mathematics:

(1) The presence of the function S2(n) in formula (4.4) led us to work of T. Lengyel
[17] on the 2-adic valuation of Stirling numbers of the second kind S(n, k). These
numbers have been around for a long time, so we expected everything to be known
about them. The next four figures show a small sample of the graph of ν2(S(n, k))
with k fixed. The case k = 5 has been analyzed [1], but the problem for k ≥ 6 is
completely open.

(2) The special case p = 3 of the sequence

(8.6) Tp(n) :=

n−1
∏

j=0

(pj + 1)!

(n+ j)!
,

appears as the number of n by n alternating sign matrices. The wonderful book [9]
tells the story of this sequence. A seminar at Tulane devoted to this question led to
the exploration of p-adic properties of these numbers. Figure 12 shows the graph
of the 2-adic valuation of T3(n) and Figure 13 the corresponding 3-adic valuation.
The structure observed in these graphs is now beginning to be explored. There



SEIZED OPPORTUNITIES 13

100 200 300 400 500

1

2

3

4

5

6

Figure 8. 2-adic val-
uation of S(n, 195)
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Figure 9. 2-adic val-
uation of S(n, 279)
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Figure 10. 2-adic
valuation of S(n, 324)
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Figure 11. 2-adic
valuation of S(n, 465)
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Figure 12. 2-adic
valuation of T3(n)
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Figure 13. 3-adic
valuation of T3(n)

are many interesting questions regarding Tp(n), we leave the reader with the most
natural one: what do these numbers count?

During the social parts at mathematical gatherings, the most common beginning
of conversations is: what do you do? The author frequently encounters surprised
faces when he states: I compute integrals. Perhaps this note has provided the reader
a clearer response.
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