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Abstract

We prove that the product
∏n
k=1(k2 + 1) is a square only for n = 3.

Key words: Quadratic polynomials, squares.

1 Introduction

The study of sequences containing infinitely many squares is a common topic in number theory.

It has been conjectured [1], and checked for n ≤ 103200, that

Pn =
n∏

k=1

(k2 + 1)

is not an square for n > 3. We prove this conjecture in full.

As an easy consequence we deduce that the sequence xn := tan
∑n
k=0 tan−1(1/k) doesn’t vanish

for n > 3, which is the main result of [1]. Indeed, notice that xn = 0 implies
∏n
k=1(k + i) =

m ∈ Z, hence
∏n
k=1(k − i) = m, and then Pn = m2 which is impossible for n > 3.

There exists a wide literature about the greatest prime factor, say Qn, of the product Pn. We

observe that the early estimates Qn/n→∞ ([3]) or Qn � n log n ([4]) easily imply that Pn is

not a square for n large enough after the first remark in the proof of theorem 1.

Email address: franciscojavier.cilleruelo@uam.es (Javier Cilleruelo).
1 This work was supported by Grants MTM 2005-04730 of MYCIT and CCG06-UAM/ESP-0477

Preprint submitted to Elsevier 19 September 2007



It should be noted, however, that our proof is completely elementary. Actually, the most sophis-

ticated tool used in the proof is the Chebyshev’s upper bound inequality for prime numbers.

In particular we avoid the use of the asymptotic
∑
p6≡1 (mod 4)

log p
p
∼ 1

2
log n used in the above

mentioned estimates of Qn.

2 The result

Theorem 1 If n > 3, then Pn =
∏n
k=1(k2 + 1) is not a square.

Proof. Through the proof, p denotes a rational prime. If Pn were a square and p|Pn then p2|Pn.

There are two possibilities: If p2|k2 + 1 for some k ≤ n then p ≤ √n2 + 1 < 2n. Otherwise,

there exist j, k, j < k ≤ n such that p|j2 + 1 and p|k2 + 1 and then p|(k− j)(k+ j) which also

implies that p < 2n. Then, if Pn is a square we can write

Pn =
∏

p<2n

pαp .

Since Pn > n!2, if we write n! =
∏
p≤n p

βp we have that

∑

p≤n
βp log p <

1

2

∑

p<2n

αp log p. (1)

We observe that α2 = dn/2e since k2 + 1 ≡ 1 or 2 (mod 4) depending whether k is odd or

even. Also it is well known that if an odd prime p divides k2 + 1 then p ≡ 1 (mod 4). In this

case, since each interval of length pj contains two solutions of x2 + 1 ≡ (mod pj), we have

αp =
∑

j≤log(n2+1)/ log p

#{k ≤ n, pj|k2 + 1} ≤ ∑

j≤log(n2+1)/ log p

2dn/pje. (2)

On the other hand

βp =
∑

j≤logn/ log p

#{k ≤ n, pj|k} =
∑

j≤logn/ log p

bn/pjc. (3)

Thus, if p ≡ 1 (mod 4) we have

αp/2− βp ≤ ∑j≤ logn
log p

(dn/pje − bn/pjc) +
∑

logn
log p

<j≤ log(n2+1)
log p

dn/pje

≤ ∑j≤ logn
log p

1 +
∑

logn
log p

<j≤ log(n2+1)
log p

1 ≤ log(n2+1)
log p

.
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We use this in (1) to write

∑

p≤n
p6≡1 (4)

βp log p ≤ 1

2
dn/2e log 2 + log(n2 + 1)π(n; 1, 4) +

1

2

∑

n<p<2n

αp log p. (4)

The estimates αp ≤ 2 if p > n and

βp ≥ n

p− 1
− p

p− 1
− log n

log p
≥ n− 1

p− 1
− log(n2 + 1)

log p
if p ≤ n

can be obtained easily from (2) and (3). Next we put these estimates in (4) to get

(n− 1)
∑

p≤n
p 6≡1 (4)

log p

p− 1
≤ (n+ 1)

log 2

4
+ log(n2 + 1)π(n) +

∑

n<p<2n

log p.

Now we use the Chebyshev inequalities
∑
p≤n log p ≤ log 4n and

∑
n<p<2n log p ≤ n log 4 and

π(n) ≤ 2 log 4 n
logn

+
√
n (see for example [2]) to obtain

∑

p≤n
p6≡1 (4)

log p

p− 1
≤ n+ 1

n− 1

(
log 2

4
+ log 4

)
+

log(n2 + 1)

n− 1

(
2 log 4

n

log n
+
√
n

)
.

The limit of the right hand side is 41
4

log 2. Actually, that quantity is < 7.14 for n ≥ 702007.

Adding over enough primes p 6≡ 1 (mod 4) we can see that for n ≥ 702007

∑

p≤n
p6≡1 (4)

log p

p− 1
> 7.14, (5)

which proves the theorem for n ≥ 702007.

Finally we have to check that Pn is not a square for 4 ≤ n < 702007.

42 + 1 = 17. The next time that the prime 17 divides k2 + 1 is for k = 17− 4 = 13. Hence Pn
is not a square for 4 ≤ n ≤ 12.

102 + 1 = 101. The next time that the prime 101 divides k2 + 1 is for k = 101− 10 = 91. Hence

Pn is not a square for 10 ≤ n ≤ 90.

362 + 1 = 1297. The next time that the prime 1297 divides k2 + 1 is for k = 1297− 36 = 1261.

Hence Pn is not a square for 36 ≤ n ≤ 1260.

8602+1 = 739601. The next time that the prime 739601 divides k2+1 is for k = 739601−860 =

738741. Hence Pn is not a square for 860 ≤ n ≤ 738740.
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