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Abstract. We analyze properties of the 2-adic valuations of S(n, k), the Stir-
ling numbers of the second kind. A conjecture that describes patterns of these
valuations for fixed k and n modulo powers of 2 is presented. The conjecture
is established for k = 5.

1. Introduction

Divisibility properties of integer sequences have long been objects of interest. In
modern language these are expressed in terms of p-adic valuations: given a prime
p and a positive integer m, there exist unique integers a, n, with a not divisible by
p and n ≥ 0, such that m = apn. The number n is called the p-adic valuation of
m. We write n = νp(m). Thus, νp(m) is the highest power of p that divides m.
The graph in Figure 1 shows the function ν2(m). Here and elsewhere in this paper
we connect succesive points in the graph in order to visually convey the rises and
drops of the sequence.
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Figure 1. The 2-adic valuation of m

A celebrated example is due to Legendre [8], who established

(1.1) νp(m!) =
m − sp(m)

p − 1
.

Here sp(m) is the sum of the base p-digits of m. In particular,

(1.2) ν2(m!) = m − s2(m).
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The reader will find in [7] details about this identity. Figure 2 shows the graph of
ν2(m!) exhibiting its linear growth. The binary expansion of m is m = a0 + a1 ·
2 + a2 · 22 + . . . + ar · 2r, with aj ∈ {0, 1}, so that 2r ≤ m ≤ 2r+1. Therefore
s2(m) = O(log2(m)) and we have

(1.3) lim
m→∞

ν2(m!)

m
= 1.

Figure 3 shows the error term s2(m) = m − ν2(m!).
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Figure 2. The 2-adic valuation of m!
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Figure 3. The error ν2(m!) − m

Legendre’s result (1.2) provides an elementary proof of Kummer’s identity

(1.4) ν2

((

m

k

))

= s2(k) + s2(m − k) − s2(m).

Not many explicit identities of this type are known.
The function νp is extended to Q by defining νp

(

a
b

)

= νp(a)− νp(b). The p-adic
metric is then defined by

(1.5) |r|p := p−νp(m).

It satisfies the ultrametric inequality

(1.6) |r1 + r1|p ≤ Max
{

|r1|p , |r2|p

}

.
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The completion of Q under this metric, denoted by Qp, is the field of p-adic numbers.
The set Zp := {x ∈ Qp : |x|p ≤ 1} is the ring of p-adic integers.

Our interest in 2-adic valuations started with the sequence

(1.7) bl,m :=

m
∑

k=l

2k

(

2m − 2k

m − k

)(

m + k

m

)(

k

l

)

,

for m ∈ N and 0 ≤ l ≤ m. This sequence appears in the evaluation of the definite
integral

(1.8) N0,4(a; m) =

∫

∞

0

dx

(x4 + 2ax2 + 1)m+1
.

In [2], it was shown that the polynomial defined by

(1.9) Pm(a) := 2−2m
m

∑

l=0

bl,mal

satisfies

(1.10) Pm(a) = 2m+3/2 (a + 1)m+1/2N0,4(a; m)/π.

The reader will find in [3] more details on this integral.
The results on the 2-adic valuations of bl,m are expressed in terms of

(1.11) Al,m :=
l! m!

2m−l
bl,m.

The coefficients Al,m can be written as

(1.12) Al,m = αl(m)
m
∏

k=1

(4k − 1) − βl(m)
m
∏

k=1

(4k + 1),

for some polynomials αl, βl, with integer coefficients and of degree l and l − 1
respectively. The next remarkable property was conjectured in [4] and established
by J. Little in [10].

Theorem 1.1. All the zeros of αl(m) and βl(m) lie on the vertical line Re m = − 1
2 .

The next theorem, presented in [1], gives 2-adic properties of Al,m.

Theorem 1.2. The 2-adic valuation of Al,m satisfies

(1.13) ν2(Al,m) = ν2( (m + 1 − l)2l ) + l,

where (a)k = a(a + 1)(a + 2) · · · (a + k − 1) is the Pochhammer symbol.

The identity

(1.14) (a)k =
(a + k − 1)!

(a − 1)!

and Legendre’s identity (1.2) yields the next expression for ν2(Al,m).

Corollary 1.3. The 2-adic valuation of Al,m is given by

(1.15) ν2(Al,m) = 3l − s2(m + l) + s2(m − l).
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There are many other examples of 2-adic valuations considered in the literature.
H. Cohen [6] has discussed the sum1

(1.16) Ck(n) :=

n
∑

j=1

2j

jk
.

These are the partial sums of the polylogarithmic series

(1.17) Lik(x) :=

∞
∑

j=1

xj

jk
.

The series converges in Q2 provided ν2(x) ≥ 1. Cohen proves that

(1.18) ν2(C1(2
m)) = 2m + 2m − 4, for m ≥ 4,

and

(1.19) ν2(C2(2
m)) = 2m + m − 1, for m ≥ 4.

The graph in Figure 4 shows the linear growth of ν2(s1(m)) and Figure 5 presents
the error term ν2(s1(m)) − m.
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Figure 4. The 2-adic valuation of C1(m)
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Figure 5. The error ν2(C1(m)) − m

1Cohen uses the notation sk(n), employed here in a different context.
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In this paper we analyze the 2-adic valuation of the Stirling numbers of the
second kind S(n, k), defined for n ∈ N and 0 ≤ k ≤ n as the number of ways to
partition a set of n elements into exactly k nonempty subsets. The next figures
show the function ν2(S(n, k)) for fixed k. These graphs indicate the complexity of
this problem.
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Figure 6. The data for S(n, 5)
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Figure 7. The data for S(n, 75)

Section 6 gives a larger selection of these type of pictures.

Main conjecture. We describe an algorithm that leads to a first description of
the function ν2(S(n, k)) as depicted in the graphs above. The conjecture is stated
here and the special case k = 5 is established in Section 4.

Definition 1.4. Let k ∈ N be fixed and m ∈ N. Then for 0 ≤ j < 2m define

(1.20) Cm,j := {2mi + j : i ∈ N }.

The first value of the index i is the smallest one that yields 2mi + j ≥ k. For
example, for k = 5 and m = 6, we have

(1.21) C6,28 = {26i + 28 : i ≥ 0}.
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Figure 8. The data for S(n, 195)

We use the notation

(1.22) ν2(Cm,j) = {ν2 (S(2mi + j, k)) : i ∈ N}.

The classes Cm,j form a partition of N into classes modulo 2m. For example, for
m = 2, we have the four classes

C2,0 = {22i : i ∈ N}, C2,1 = {22i + 1 : i ∈ N},

C2,2 = {22i + 2 : i ∈ N}, C2,3 = {22i + 3 : i ∈ N}.

The class Cm,j is called constant if ν2(Cm,j) consists of a single value. This single
value is called the constant of the class Cm,j .

For example, Corollary 3.3 shows that ν2(S(4i + 1, 5)) = 0, independently of i.
Therefore, the class C2,1 is constant. Similarly, C2,2 is constant with ν2(C2,2) = 0.

We now introduce inductively the concept of m-level. For m = 1, the 1-level
consists of the two classes

(1.23) C1,0 = {2i : i ∈ N} and C1,1 = {2i + 1 : i ∈ N},

that is, the even and odd integers. Assume that the m − 1 level has been defined
and it consists of the s classes

(1.24) Cm−1,i1 , Cm−1,i2 , · · · , Cm−1,is
.

Each class Cm−1,ij
splits into two classes modulo 2m, namely, Cm,ij

and Cm,ij+2m−1 .
The m-level is formed by the non-constant classes modulo 2m.

Example 1.5. We describe the case of Stirling numbers S(n, 10). Start with the
fact that the 4-level consists of the classes C4,7, C4,8, C4,9 and C4,14. These split
into the eight classes

C5,7, C5,23, C5,8, C5,24, C5,9, C5,25, C5,14, and C5,30,

modulo 32. Then one checks that C5,23, C5,24, C5,25 and C5,30 are all constant
(with constant value 2 for each of them). The other four classes form the 5-level:

(1.25) {C5,7, C5,8, C5,9, C5,14}.
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We are now ready to state our main conjecture.

Conjecture 1.6. Let k ∈ N be fixed. Then we conjecture that

a) there exists a level m0(k) and an integer µ(k), such that, for any m ≥ m0(k) the
number of non-constant classes of level m is µ(k), independently of m,

b) moreover, for each m ≥ m0(k), each of the µ(k) non-constant classes split into
one constant and one non-constant in order to produce the next level.

Example 1.7. The conjecture is illustrated for k = 11. We claim that m0(11) =
3 and µ(11) = 4. The prediction is that for levels m ≥ 3 we have four non-
constant classes. Indeed, the classes C2,0, C2,1, C2,2, C2,3, have non-constant 2-
adic valuation. Thus, every class in the 2-level split according to the diagram. To
compute the next step, we observe that

ν2(C3,3) = ν2(C3,5) = {0} and ν2(C3,4) = ν2(C3,6) = {1},

so there are four constant classes. The remaining four classes C3,0, C3,1, C3,2 and
C3,7 form the 3-level. Observe that each of the four classes from the 2-level splits
into a constant class and a class that forms part of the 3-level.

This process continues. At the next step, the classes of the 3-level split in two
giving a total of 8 classes modulo 24. For example, C3,2 splits into C4,2 and C4,10.
The conjecture states that exactly one of these classes has constant 2-adic valuation.
Indeed, the class C4,2 satisfies ν2(C4,2) ≡ 2 and ν2(C4,10) is not constant.

Example 1.8. Figure 9 illustrates this process in the case k = 7. The first row
of the figure shows the classes at level 2. The class C2,0 has constant valuation
ν2(C2,0) = 2 and the class C2,3 satisfies ν2(C2,3) = 0. The remaining two classes,
namely C2,1 and C2,3 form the second level that split into the pairs {C3,1, C3,5}
and {C3,2, C3,6}. In each pair we find a class of constant valuation and the second
one, non-constant, that will be split to proceed with the diagram.

The diagram shows that m0(7) = 2 and µ(7) = 2.

Example 1.9. A case with a twist is k = 13. Level 3 has 8 classes and only 3 of
them are constant (one expects half of them to be so). The five remaining classes
split into 10 with 6 constants classes. At the next splitting, that is at level 5, we
return to the expected count with 8 classes, half of which are non-constant. Thus,
in this case, we have m0(13) = 5 and µ(13) = 4.

Elementary formulas. Throughout the paper we will use several elementary
properties of S(n, k), listed below:

• Relation to Pochhammer

(1.26) xn =

n
∑

k=0

S(n, k)(x − k + 1)k,
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Figure 9. The splitting for k = 7

• An explicit formula

(1.27) S(n, k) =
1

k!

k−1
∑

i=0

(−1)i

(

k

i

)

(k − i)n,

• The generating function

(1.28)
1

(1 − x)(1 − 2x)(1 − 3x) · · · (1 − kx)
=

∞
∑

n=1

S(n, k)xn,

• The recurrence

(1.29) S(n, k) = S(n − 1, k − 1) + kS(n − 1, k)

Lengyel [9] conjectured, and De Wannemacker [12] proved, a special case of the
2-adic valuation of S(n, k):

(1.30) ν2 (S(2n, k)) = s2(k) − 1,

independently of n. Here s2(k) is the sum of the binary digits of k. A numerical
experiment suggests that

(1.31) ν2 (S(2n + 1, k + 1)) = s2(k) − 1,
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is a companion of (1.30). In the general case, De Wannemacker [13] established the
inequality

(1.32) ν2 (S(n, k)) ≥ s2(k) − s2(n), 0 ≤ k ≤ n.

The difference in (1.32) is more regular if k − 1 is close to a power of 2. Figure 10
shows the (irregular) case k = 101 and Figure 11 shows the smoother case k = 129.
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Figure 10. De Wannemacker difference for k = 101
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Figure 11. De Wannemacker difference for k = 129

2. The elementary cases

This section presents, for sake of completeness, the 2-adic valuation of S(n, k)
for 1 ≤ k ≤ 4. The arguments are all elementary.

Lemma 2.1. The Stirling numbers of order 1 are given by S(n, 1) = 1, for all
n ∈ N. Therefore

(2.1) ν2(S(n, 1)) = 0.

Proof. There is a unique way to partition a set of n elements into one nonempty
set: take them all. �
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Lemma 2.2. The Stirling numbers of order 2 are given by S(n, 2) = 2n − 1, for
all n ∈ N. Therefore

(2.2) ν2(S(n, 2)) = 0.

Proof. The formula for S(n, 2) comes from (1.27). It can also be established by
induction. Using the recurrence (1.29), and Lemma 2.1 we have

S(n, 2) = S(n − 1, 1) + 2S(n− 1, 2) = 1 + 2(2n−1 − 1) = 2n − 1.

�

Lemma 2.3. The Stirling numbers of order 3 are given by

(2.3) S(n, 3) = 1
2 (3n−1 − 2n + 1).

Moreover

(2.4) ν2(S(n, 3)) =

{

0 if n is odd,

1 if n is even.

Proof. The expression for S(n, 3) comes from (1.27). An inductive proof also follows
directly from the recurrence (1.29)

(2.5) S(n, 3) = S(n − 1, 2) + 3S(n− 1, 3)

and Lemma 2.2. To prove the expression for ν2(S(n, 3)) we iterate the recurrence
and obtain

(2.6) 2n − 1 = S(n, 3) −

N−1
∑

k=1

3k(2n−k − 1) − 3NS(n − N, 3),

and with N = n − 1 we have

(2.7) S(n, 3) = 2n − 1 −

n−2
∑

k=1

3k(2n−k − 1).

If n is odd, then S(n, 3) is odd and ν2(S(n, 3)) = 0.
For n even, the recurrence (2.5) yields

(2.8) S(n, 3) = 2n−1 + 3 · 2n−2 − 4 + 32S(n − 2, 3).

As an inductive step, assume that S(n− 2, 3) = 2Tn−2, with Tn−2 odd. Then (2.8)
yields

(2.9) 1
2S(n, 3) = 2n−2 + 3 · 2n−3 + 32Tn−2 − 2,

and we conclude that S(n, 3)/2 is an odd integer. Therefore ν2(S(n, 3)) = 1 as
claimed. �

We now present a second proof of this result using elementary properties of the
valuation ν2. In particular we use the ultrametric inequality

(2.10) ν2(x1 + x2) ≥ Min {ν2(x1), ν2(x2) } .

The inequality is strict unless ν(x1) = ν2(x2). This inequality is equivalent to (1.6).

Second proof of Lemma 2.3. The powers of 3 modulo 8 satisfy

(2.11) 3m + 1 ≡ 2 + (−1)m+1 mod 8,
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because 32k ≡ 1 mod 8. Therefore 3m +1 = 8t+3+(−1)m+1, for some t ∈ Z. Now

(2.12) ν2(8t) = 3 + ν2(t) > ν2(3 + (−1)m+1),

and the ultrametric inequality (2.10) yields

(2.13) ν2(3
m + 1) = ν2(3 + (−1)m+1) =

{

2 if m is odd,

1 if m is even.

The Stirling numbers S(n, 3) are given by

(2.14) 2S(n, 3) = 3n−1 + 1 − 2n,

and ν2(2
n) = n > 2 ≥ ν2(3

n−1 + 1). We conclude that

(2.15) ν2(S(n, 3)) = ν2(3
n−1 + 1 − 2n) − 1 = ν2(3

n−1 + 1) − 1.

The result now follows from (2.13).

We now discuss the Stirling number of order 4.

Lemma 2.4. The Stirling numbers of order 4 are given by

(2.16) S(n, 4) = 1
6 (4n−1 − 3n − 3 · 2n+1 − 1).

Moreover

(2.17) ν2(S(n, 4)) =

{

1 if n is odd,

0 if n is even.

That is, ν2(S(n, 4)) = 1 − ν2(S(n, 3)).

Proof. The expression for S(n, 4) comes from (1.27). To establish the formula for
ν2(S(n, 4)) we use the recurrence (1.29) in the case k = 4:

(2.18) S(n, 4) = S(n − 1, 3) + 4S(n − 1, 4).

For n even, the value S(n− 1, 3) is odd, so that S(n, 4) is odd and ν2(S(n, 4)) = 0.
For n odd, S(n, 4) is even, since S(n − 1, 3) is even. The recurrence (2.18) is now
written as

(2.19) 1
2S(n, 4) = 1

2S(n − 1, 3) + 2S(n − 1, 4).

The value ν2(S(n − 1, 3)) = 1 shows that the right hand side is odd, yielding
ν2(S(n, 4)) = 1. �

3. The Stirling numbers of order 5

The elementary cases discussed in the previous section are the only ones for
which the 2-adic valuation ν2(S(n, k)) is easy to compute. The graph in Figure 12
gives ν2(S(n, 5)) and we now explore its properties.

The explicit formula (1.27) yields an expression for S(n, 5).

Lemma 3.1. The Stirling numbers S(n, 5) are given by

(3.1) S(n, 5) = 1
24 (5n−1 − 4n + 2 · 3n − 2n+1 + 1).
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Figure 12. The 2-adic valuation of S(n, 5)

We now discuss the valuation ν2(S(n, 5)). The 1-level consists of the two classes

(3.2) 1 − level : {C1,0, C1,1}.

These two classes split into {C2,0, C2,1, C2,2, C2,3} modulo 4. The parity of
S(n, 5) determines two of them.

Lemma 3.2. The Stirling numbers S(n, 5) satisfy

(3.3) S(n, 5) ≡

{

1 mod 2 if n ≡ 1, or 2 mod 4,

0 mod 2 if n ≡ 3, or 0 mod 4.

Proof. The recurrence

(3.4) S(n, 5) = S(n − 1, 4) + 5S(n − 1, 5),

and the parity

(3.5) S(n, 4) ≡

{

1 mod 2 if n ≡ 0 mod 2,

0 mod 2 if n ≡ 1 mod 2,

give the result by induction. �

Corollary 3.3. The Stirling numbers S(n, 5) satisfy

(3.6) ν2(S(4n + 1, 5)) = ν2(S(4n + 2, 5)) = 0, for all n ∈ N.

The corollary states that the classes C2,1 and C2,2 are constant, so the 2 level is

(3.7) 2 − level : {C2,0, C2,3}.

This confirms part of the main conjecture; here m0 = 3 in view of 22 < 5 ≤ 23

and the first level where we find constant classes is m0 − 1 = 2.

Remark. Corollary 3.3 reduces the discussion of ν2(S(n, 5)) to the indices n ≡
0 or 3 mod 4. These two branches can be treated in parallel. Introduce the notation

(3.8) qn := ν2(S(n, 5)),

and consider the table of values

(3.9) X := {q4i, q4i+3 : i ≥ 2}.
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This starts as

(3.10) X = {1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 6, 7, 1, 1, . . .},

and after a while it continues as

(3.11) X = {. . . , 1, 1, 2, 2, 1, 1, 11, 6, 1, 1, 2, 2, . . .}.

We observe that q4i = q4i+3 for most indices.

Definition 3.4. The index i is called exceptional if q4i 6= q4i+3.

The first exceptional index is i = 7 where q28 = 6 6= q31 = 7. The list of
exceptional indices continues as {7, 39, 71, 103, . . .}.

Conjecture 3.5. The set of exceptional indices is {32j + 7 : j ≥ 1}.

We now consider the class

(3.12) C2,0 := {q4i = ν2(S(4i), 5) : i ≥ 2},

where we have omitted the first term S(4, 5) = 0. The class C2,0 starts as

(3.13) C2,0 = {1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, . . .},

and it splits according to the parity of the index i into

(3.14) C3,4 = {q8i+4 : i ≥ 1} and C3,0 = {q8i : i ≥ 1}.

The data suggests that C3,0 is constant. This is easy to check.

Proposition 3.6. The Stirling numbers of order 5 satisfy

(3.15) ν2(S(8i, 5)) = 1, for all i ≥ 1.

Proof. We analyze the identity

(3.16) 24S(8i, 5) = 58i−1 − 48i + 2 · 38i − 28i+1 + 1

modulo 32. Using 58 ≡ 1 and 57 ≡ 13 we obtain 58i−1 ≡ 13. Also 48i ≡ 28i+1 mod
0. Finally 38i ≡ 812i ≡ 172i ≡ 1. Therefore

(3.17) 58i−1 − 48i + 2 · 38i − 28i+1 + 1 ≡ 16 mod 32.

We obtain that 24S(8i, 5) = 32t + 16 for some t ∈ N and this yields 3S(8i, 5) =
2(2t + 1). Therefore ν2(S(8i, 5)) = 1. �

We now consider the class C3,4.

Proposition 3.7. The Stirling numbers of order 5 satisfy

(3.18) ν2(S(8i + 4, 5)) ≥ 2, for all i ≥ 1.

Proof. We analyze the identity

(3.19) 24S(8i + 4, 5) = 58i+3 − 48i+4 + 2 · 38i+4 − 28i+5 + 1

modulo 32. Using 58 ≡ 1, 53 ≡ 29, 38 ≡ 1, 34 ≡ 17 and 24 ≡ 16 modulo 32 we
obtain

(3.20) 24S(8i + 4, 5) ≡ 0 mod 32.

Therefore 24S(8i+4, 5) = 32t for some t ∈ N and this yields ν2(S(8i+4, 5) ≥ 2. �
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Note. Lengyel [9] established that

(3.21) ν2(k!S(n, k)) = k − 1,

for n = a2q, a is odd, and q ≥ k − 2. In the special case k = 5 this yields
ν2(S(n, 5)) = 1 for n = a2q and q ≥ 3. These values of n have the form n = 8a·2q−3,
so this is included in Proposition 3.6.

Remark. A similar argument yields

(3.22) ν2(S(8i + 3, 5)) = 1 and ν2(S(8i + 7, 5)) ≥ 2.

We conclude that

(3.23) 3 − level : {C3,4, C3,7}.

This confirms the main conjecture: each of the classes of the 2-level produces a
constant class and a second one in the 3-level.

We now consider the class C3,4 and its splitting as C4,4 and C4,12. The data for
C3,4 starts as

(3.24) C3,4 = {3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 11, 2, 3, 2, . . .}.

This suggests that the values with even index are all 2. This can be verified.

Proposition 3.8. The Stirling numbers of order 5 satisfy

(3.25) ν2(S(16i + 4, 5)) = 2, for all ≥ 1.

Proof. We analyze the identity

(3.26) 24S(16i + 4, 5) = 516i+3 − 416i+4 + 2 · 316i+4 − 216i+5 + 1

modulo 64. Using 516 ≡ 1, 53 ≡ 61, 316 ≡ 1 and 34 ≡ 17 we obtain

(3.27) 516i+3 − 416i+4 + 2 · 316i+4 − 216i+5 + 1 ≡ 32 mod 64.

Therefore 24S(16i + 4, 5) = 64t + 32 for some t ∈ N. This gives 3S(16i + 4, 5) =
4(2t + 1) and it follows that ν2(S(16i + 4, 5)) = 2. �

Note. A similar argument shows that ν2(S(16i + 12, 5)) ≥ 3 and also ν2(S(16i +
7, 5)) = 2 and ν2(S(16i + 15, 5)) ≥ 3. Therefore the 4-level is {C4,12, C4,15}.

This splitting process of the classes can be continued and, according to our main
conjecture, the number of elements in the m-level is always constant. To prove the
statement similar to Propositions 3.6 and 3.8 requires us to analyze the congruence

(3.28) 24S(2mi+ j, 5) ≡ 52mi+j−1 − 42mi+j +2 · 32mi+j − 22mi+j+1 +1 mod 2m+2.

This can be done for a specific choice of j, those giving the indices at the m-level.
At the moment we cannot predict which values of j will appear at the m-level. We
present a proof of this conjecture, for the special case k = 5, in the next section.

Problem. Is there a combinatorial mechanism that enables us to make such a
binary choice for each m-level split class?
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Lundell [11] studied the Stirling-like numbers

(3.29) Tp(n, k) =

k
∑

j=0

(−1)k−j

(

k

j

)

jn,

where the prime p is fixed and the index j is omitted in the sum if it is divisible by
p. Clarke [5] conjectured that

(3.30) νp(k! S(n, k)) = νp(T (n, k)).

From this conjecture he derives an expression for ν2(S(n, 5)) in terms of the zeros
of the form f0,5(x) = 5 + 10 · 3x + 5x in the ring of 2-adic integers Z2.

Theorem 3.9. Let u0 and u1 be the 2-adic zeros of the function f0,5. Then, under
the assumption that conjecture (3.30) holds, we have

(3.31) ν2(S(n, 5)) =

{

−1 + ν2(n − u0) if n is even,

−1 + ν2(n − u1) if n is odd.

Here u0 is the unique zero of f0,5 that satisfies u0 ∈ 2Z2 and u1 is the other zero
of f0,5 and satisfies u1 ∈ 1 + 2Z2.

Clarke also obtained in [5] similar expressions for ν2(S(n, 6)) and ν2(S(n, 7)) in
terms of zeros of the functions

f0,6 = −6 − 20 · 3x − 6 · 5x and f0,7 = 7 + 35 · 3x + 21 · 5x + 7x.

4. Proof of the main conjecture for k = 5

The goal of this section is to prove the main conjecture in the case k = 5. The
parameter m0 is 3 in view of 22 < 5 ≤ 23. In the previous section we have verified
that m0 − 1 = 2 is the first level for constant classes. We now prove this splitting
of classes.

Theorem 4.1. Assume m ≥ m0. Then the m-level consists of exactly two split
classes: Cm,j and Cm,j+2m−1 . They satisfy ν2(Cm,j) > m−3 and ν2(Cm,j+2m−1) >
m− 3. Then exactly one, call it C1, satisfies ν2(C

1) = {m− 2} and the other one,
call it C2, satisfies ν2(C

2) > m − 2.

The proof of this theorem requires several elementary results of 2-adic valuations.

Lemma 4.2. For m ∈ N: ν2

(

52m

− 1
)

= m + 2.

Proof. Start at m = 1 with ν2(24) = 3. The inductive step uses

52m+1

− 1 = (52m

− 1) · (52m

+ 1).

Now 5k + 1 ≡ 2 mod 4 so that 52m

+ 1 = 2α1 with α1 odd. Thus

ν2(5
2m+1

− 1) = ν2(5
2m

− 1) + ν2(5
2m

+ 1) = (m + 2) + 1 = m + 3.

�

The same type of argument produces the next lemma.

Lemma 4.3. For m ∈ N: ν2(3
2m

− 1) = m + 2.

Lemma 4.4. For m ∈ N: ν2(5
2m

− 32m

) = m + 3.
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Proof. The inductive step uses

52m+1

− 32m+1

= (52m

− 32m

) ×
(

(52m

− 1) + (32m

+ 1)
)

.

Therefore ν2(5
2m

− 1) = m + 2 and 32m

≡ 1 mod 4, thus ν2(3
2m

+ 1) = 1. We
conclude that

ν2((5
2m

− 1) + (32m

+ 1)) = Min{m + 2, 1} = 1.

We obtain

(4.1) ν2(5
2m+1

− 32m+1

) = m + 4,

and this concludes the inductive step. �

The recurrence (1.29) for the Stirling numbers S(n, 5) is

(4.2) S(n, 5) = 5S(n − 1, 5) + S(n − 1, 4).

Iterating this result yields the next lemma.

Lemma 4.5. Let t ∈ N. Then

(4.3) S(n, 5) − 5tS(n − t, 5) =

t−1
∑

j=0

5jS(n − j − 1, 4).

Proof of theorem 4.1. We have already checked the conjecture for the 2-level.
The inductive hypothesis states that the (m − 1)-level survivor has the form

(4.4) Cm,k = {ν2(S(2mn + k, 5)) : n ≥ 1}

and that ν2(S(2mn + k, 5)) > m− 2. At the next level this class splits into the two
classes

Cm+1,k = {ν2(S(2m+1n + k, 5)) : n ≥ 1} and

Cm+1,k+2m = {ν2(S(2m+1n + k + 2m, 5)) : n ≥ 1},

and every element of each of these two classes is greater or equal than m − 1.

We now prove that one of these classes reduces to the singleton {m − 1} and
that every element in the other class is strictly greater than m − 1.

The first step is to use Lemma 4.5 to compare the values of S(2m+1n+ k, 5) and
S(2m+1n + k + 2m, 5). Define

(4.5) M = 2m − 1 and N = 2m+1n + k;

then we have

(4.6) S(2m+1n + k + 2m, 5) − 52m

S(2m+1n + k, 5) =

M
∑

j=0

5M−jS(N + j, 4).

Proposition 4.6. With the notation as above,

(4.7) ν2





M
∑

j=0

5M−jS(N + j, 4)



 = m − 1.
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Proof. The explicit formula (1.27) yields

(4.8) 6S(n, 4) = 4n−1 + 3 · 2n−1 − 3n − 1.

Thus

6
M
∑

j=0

5M−jS(N + j, 4) = 4N−1(5M+1 − 4M+1) + 2N−1(5M+1 − 2M+1)

−3N × 1
2 (5M+1 − 3M+1) − 1

4 (5M+1 − 1).

The results in Lemmas 4.2, 4.3 and 4.4 yield

(4.9) 6

M
∑

j=0

5M−jS(N + j, 4) = 4N−1α1 + 2N−1α2 − 3N · 2m+2α3 − 2mα4

with αj odd integers. Write this as

6

M
∑

j=0

5M−jS(N + j, 4) = 2N−1
(

2N−1α1 + α2

)

− 2m
(

4α33
N + 1

)

≡ T1 + T2.

Then ν2(T1) = N − 1 > m = ν2(T2) and we obtain

(4.10) ν2





M
∑

j=0

5M−jS(N + j, 4)



 = m − 1.

We conclude that

(4.11) S(2m+1n + k + 2m, 5) − 52m

S(2m+1n + k, 5) = 2m−1α5,

with α5 odd. Define

(4.12) X := 2−m+1S(2m+1n + k + 2m, 5) and Y := 2−m+1S(2m+1n + k, 5).

Then X and Y are integers and X − Y ≡ 1 mod 2, so that they have opposite
parity. If X is even and Y is odd, we obtain

(4.13) ν2

(

S(2m+1n + k + 2m, 5)
)

> m − 1 and ν2

(

S(2m+1n + k, 5)
)

= m − 1.

The case X odd and Y even is similar. This completes the proof. �

5. Some approximations

In this section we present some approximations to the function ν2(S(n, 5)). These
approximations were derived empirically and they support our belief that 2-adic
valuations of Stirling numbers can be well approximated by simple integer combi-
nations of the most basic 2-adic valuations of the integers.

For each prime p, define

(5.1) λp(m) =
1

2

(

1 − (−1)m mod p
)

.

First approximation. Define

(5.2) f1(m) := ⌊
m + 1

2
⌋ + 112λ2(m) + 50λ2(m + 1).

Then ν2(S(m, 5)) and ν2(f1(m)) agree for most values. The first time they differ is
at m = 156 where

ν2(S(156, 5))− ν2(f1(156)) = 4.
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The first few indices for which ν2(S(m, 5)) 6= ν2(f1(m)) are {156, 287, 412, 668, 799, . . .}.

Conjecture 5.1. Define

(5.3) x1(m) = 156 + 125⌊
4m

3
⌋ + 6⌊

2m + 1

3
⌋

and

(5.4) I1 = {x1(m) : m ≥ 0}.

Then ν2(S(m, 5)) = ν2(f1(m)) unless m ∈ I1.

The parity of the exceptions in I1 is easy to establish: every third element is odd
and the even indices of I1 are on the arithmetic progression 256m + 156.

Second approximation. We now describe a new approximation to the error

(5.5) Err2(m, 5) := ν2(S(m, 5)) − ν2(f1(m)).

Define

m3(m) := (m + 2) mod 3,

αm := λ3(m + 2) (1 + λ3(m)) + λ2(m + 1)λ3(m).

Now define

(5.6) f2(m) =

(

2m3

m3

)

⌊
m + 2

3
⌋ + 208λ3(m + 1) + 27λ2(m)λ3(m).

The next conjecture improves the prediction of Conjecture 5.1.

Conjecture 5.2. Define

(5.7) Err2(x1(m)) := ν2(S(x1(m), 5) − (−1)αmν2(f2(m)),

and

(5.8) x2(m) = 109 + 107⌊
4m + 2

3
⌋ + 85⌊

4m + 1

3
⌋.

Finally, let I2 = {x2(m) : m ≥ 0}. Then Err2(m) = 0 unless m ∈ I2.

There is single class per level that we write as

(5.9) Cm,j = {q2mi+j : i ∈ N},

where j = j(m) is the index that corresponds to the non-constant class at the
m-level. The first few examples are listed below.

C2,4 = {q4i+4 : i ∈ N}

C3,4 = {q8i+4 : i ∈ N}

C4,12 = {q16i−4 : i ∈ N}

C5,28 = {q32i−4 : i ∈ N}

C6,28 = {q64i−36 : i ∈ N}

C7,156 = {q128i−100 : i ∈ N}

C8,156 = {q256i−100 : i ∈ N}

C9,156 = {q512i−356 : i ∈ N}

C10,156 = {q1024i−868 : i ∈ N}

We have observed a connection between the indices j(m) and the set of excep-
tional indices I1 in (5.4).
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Conjecture 5.3. Construct a list of numbers {ci : i ∈ N} according to the following
rules. Let c1 = 8 (the first index in the class C2,4), and then define cj as the first
value on Cm,j that is strictly bigger than cj−1. The set C begins as

(5.10) C = {8, 12, 28, 60, 92, 156, 412, 668, 1180, . . .}.

Then, starting at 156, the number ci ∈ I1.

6. A sample of pictures

In this section we present data that illustrate the wide variety of behavior for
the 2-adic valuation of Stirling numbers S(n, k).
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Figure 13. The data for S(n, 80)
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Figure 14. The data for S(n, 126)



20 TEWODROS AMDEBERHAN, DANTE MANNA, AND VICTOR H. MOLL

200 300 400 500 600

2

4

6

8

10

12

Figure 15. The data for S(n, 146)
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Figure 16. The data for S(n, 195)
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Figure 17. The data for S(n, 252)

7. Conclusions

We have presented a conjecture that describes the 2-adic valuation of the Stirling
numbers S(n, k). This conjecture is established for k = 5.
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Figure 18. The data for S(n, 260)
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Figure 19. The data for S(n, 279)
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Figure 20. The data for S(n, 324)
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Figure 21. The data for S(n, 465)
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Figure 22. The data for S(n, 510)
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Figure 23. The data for S(n, 512)
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